120 lines
5.0 KiB
VHDL
Raw Normal View History

2023-10-31 07:47:27 +01:00
----------------------------------------------------------------------------------------------------
-- Component : squareRoot_pipe
-- Author : pwkolas
----------------------------------------------------------------------------------------------------
-- File : squareRoot_pipe.vhd
-- Mod. Date : XX.XX.XXXX
-- Version : 1.00
----------------------------------------------------------------------------------------------------
-- Description : Square root calculator.
-- Based on
-- "A New Non-Restoring Square Root Algorithm and Its VLSI Implementations"
--
----------------------------------------------------------------------------------------------------
-- Modification History :
--
----------------------------------------------------------------------------------------------------
-- Comments :
--
----------------------------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity squareRoot_pipe is
generic (
G_DATA_W : integer := 32
);
port (
clk : in std_logic;
rst : in std_logic;
iv_data : in std_logic_vector(G_DATA_W-1 downto 0);
ov_res : out std_logic_vector((G_DATA_W/2)-1 downto 0)
);
end entity squareRoot_pipe;
architecture squareRoot_pipe_rtl of squareRoot_pipe is
constant C_ALU_W : integer := ((G_DATA_W/2) + 2);
constant C_PIPE_L : integer := G_DATA_W/2;
constant C_OFFSET : integer := 3; -- width of start vectors going to ALU
type t_arr_pipe_x_data is array (C_PIPE_L-1 downto 0) of unsigned(G_DATA_W-1 downto 0);
signal a_data : t_arr_pipe_x_data; -- (D)
signal a_R : t_arr_pipe_x_data; -- (R)
type t_arr_pipe_x_alu is array (C_PIPE_L-1 downto 0) of unsigned(C_ALU_W-1 downto 0);
type t_arr_pipe_x_res is array (C_PIPE_L-1 downto 0) of unsigned(G_DATA_W/2-1 downto 0);
signal a_Q : t_arr_pipe_x_res; -- (ALU Q out)
signal nextOp : std_logic_vector(C_PIPE_L-1 downto 0);
begin
sqrt_p : process (clk, rst)
variable va_AluInR : t_arr_pipe_x_alu; -- (ALU R in)
variable va_AluInQ : t_arr_pipe_x_alu; -- (ALU Q in)
variable va_AluOut : t_arr_pipe_x_alu; -- (ALU Q out)
begin
if (rst = '1') then
a_data <= (others => (others => '0'));
a_R <= (others => (others => '0'));
a_Q <= (others => (others => '0'));
va_AluInR := (others => (others => '0'));
va_AluInQ := (others => (others => '0'));
va_AluOut := (others => (others => '0'));
nextOp <= (others => '0');
elsif rising_edge(clk) then
-- stage 0 start conditions, ALU inputs
va_AluInR(0) := (others => '0');
va_AluInR(0)(1 downto 0) := unsigned(iv_data(G_DATA_W-1 downto G_DATA_W-1-1));
va_AluInQ(0) := (others => '0');
va_AluInQ(0)(0) := '1';
-- stage 0 calculations
va_AluOut(0) := va_AluInR(0) - va_AluInQ(0);
-- stage 0 result registers, ALU output
a_data(0) <= shift_left(unsigned(iv_data), 2);
a_R(0) <= (others => '0');
a_R(0)(G_DATA_W-1 downto G_DATA_W-1-1) <= va_AluOut(0)(1 downto 0);
a_Q(0) <= (others => '0');
a_Q(0)(0) <= not va_AluOut(0)(2);
nextOp(0) <= not va_AluOut(0)(2);
-- next stages
for i in 1 to C_PIPE_L-1 loop
-- prepare inputs for next stage
va_AluInR(i) := (others => '0');
va_AluInR(i)(C_OFFSET+i-1 downto 2) := a_R(i-1)(G_DATA_W-(i-1)-1 downto G_DATA_W-(2*i));
va_AluInR(i)(2-1 downto 0) := a_data(i-1)(G_DATA_W-1 downto G_DATA_W-1-1);
va_AluInQ(i) := (others => '0');
va_AluInQ(i)(C_OFFSET+(i-1)-1 downto 2) := a_Q(i-1)(i-1 downto 0);
va_AluInQ(i)(1) := not a_Q(i-1)(0);
va_AluInQ(i)(0) := '1';
-- ALU ADD/SUB
if (nextOp(i-1) = '1') then
va_AluOut(i) := va_AluInR(i) - va_AluInQ(i);
else
va_AluOut(i) := va_AluInR(i) + va_AluInQ(i);
end if;
-- result registers
a_data(i) <= shift_left(unsigned(a_data(i-1)), 2);
a_R(i) <= (others => '0');
a_R(i)(G_DATA_W-i-1 downto G_DATA_W-2*(i+1)) <= va_AluOut(i)(i+1 downto 0);
a_Q(i) <= shift_left(unsigned(a_Q(i-1)), 1);
a_Q(i)(0) <= not va_AluOut(i)(i+2);
nextOp(i) <= not va_AluOut(i)(i+2);
end loop;
end if;
end process;
ov_res <= std_logic_vector(a_Q(C_PIPE_L-1));
end architecture squareRoot_pipe_rtl;