2023-10-31 07:47:27 +01:00
|
|
|
library ieee;
|
|
|
|
use ieee.std_logic_1164.all;
|
|
|
|
use ieee.numeric_std.all;
|
|
|
|
|
|
|
|
library work;
|
|
|
|
use work.reg32.all;
|
|
|
|
use work.task.all;
|
|
|
|
|
|
|
|
entity rand is
|
|
|
|
port (
|
|
|
|
clk : in std_logic;
|
|
|
|
reset : in std_logic;
|
|
|
|
|
|
|
|
task_start : in std_logic;
|
|
|
|
task_state : out work.task.State;
|
|
|
|
seed : in work.reg32.word;
|
|
|
|
|
|
|
|
signal_write : out std_logic;
|
|
|
|
signal_writedata : out std_logic_vector( 31 downto 0 )
|
|
|
|
);
|
|
|
|
end entity rand;
|
|
|
|
|
|
|
|
architecture rtl of rand is
|
|
|
|
|
|
|
|
signal current_task_state : work.task.State;
|
|
|
|
signal next_task_state : work.task.State;
|
|
|
|
signal index : integer range 0 to work.task.STREAM_LEN;
|
|
|
|
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
--Signale anlegen:
|
|
|
|
signal data_valid_intern : std_logic; --um skalieren zu gehen
|
|
|
|
--signal angle_intern : signed(31 downto 0);
|
|
|
|
--signal busy_intern : std_logic;
|
|
|
|
--signal result_valid_intern : std_logic;
|
|
|
|
--signal sine_intern : signed(31 downto 0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--State Machine anlegen:
|
|
|
|
type CalcState is(
|
|
|
|
CALC_IDLE,
|
|
|
|
CALC_RANDOMISIEREN,--2) neuen Randomwert berechnen
|
|
|
|
--(dauert einige Takte)
|
|
|
|
CALC_SKALIEREN,--3) den berechneten Wert skalieren
|
|
|
|
CALC_IN_FIFO_ABSPEICHERN); --4) im FIFO abspeichern
|
|
|
|
|
|
|
|
signal current_calc_state : CalcState;
|
|
|
|
signal next_calc_state : CalcState;
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-10-31 07:47:27 +01:00
|
|
|
begin
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
--IP-Core instanzieren und entsprechende Signale verbinden:
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-10-31 07:47:27 +01:00
|
|
|
task_state_transitions : process ( current_task_state, task_start, index ) is
|
|
|
|
begin
|
|
|
|
next_task_state <= current_task_state;
|
|
|
|
case current_task_state is
|
|
|
|
when work.task.TASK_IDLE =>
|
|
|
|
if ( task_start = '1' ) then
|
|
|
|
next_task_state <= work.task.TASK_RUNNING;
|
|
|
|
end if;
|
|
|
|
when work.task.TASK_RUNNING =>
|
|
|
|
if ( index = work.task.STREAM_LEN - 1 ) then
|
|
|
|
next_task_state <= work.task.TASK_DONE;
|
|
|
|
end if;
|
|
|
|
when work.task.TASK_DONE =>
|
|
|
|
if ( task_start = '1' ) then
|
|
|
|
next_task_state <= work.task.TASK_RUNNING;
|
|
|
|
end if;
|
|
|
|
end case;
|
|
|
|
end process task_state_transitions;
|
|
|
|
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
--ZUSTANDSMASCHINE:
|
|
|
|
calc_state_transitions : process (all) is
|
|
|
|
begin
|
|
|
|
next_calc_state <= current_calc_state;
|
|
|
|
case current_calc_state is
|
|
|
|
when CALC_IDLE =>
|
|
|
|
if(current_task_state = work.task.TASK_RUNNING) then
|
|
|
|
next_calc_state <= CALC_RANDOMISIEREN;
|
|
|
|
end if;
|
|
|
|
when CALC_RANDOMISIEREN =>
|
|
|
|
--if(result_valid_intern = '1' and busy_intern = '0') then--busy_intern = '0'
|
|
|
|
if(data_valid_intern = '1') then
|
|
|
|
next_calc_state <= CALC_SKALIEREN;
|
|
|
|
end if;
|
|
|
|
when CALC_SKALIEREN =>
|
|
|
|
next_calc_state <= CALC_IN_FIFO_ABSPEICHERN;
|
|
|
|
when CALC_IN_FIFO_ABSPEICHERN =>
|
|
|
|
next_calc_state <= CALC_RANDOMISIEREN;
|
|
|
|
|
|
|
|
if(index = 1024) then
|
|
|
|
next_calc_state <= CALC_IDLE;
|
|
|
|
end if;
|
|
|
|
end case;
|
|
|
|
end process calc_state_transitions;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-10-31 07:47:27 +01:00
|
|
|
sync : process ( clk, reset ) is
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
--VARIABLEN:
|
|
|
|
VARIABLE randomisiert : signed ( 31 downto 0 );
|
|
|
|
VARIABLE scaled : signed ( 31 downto 0 );
|
|
|
|
|
|
|
|
random_number_word : std_logic_vector(31 downto 0);
|
|
|
|
variable mask_bit_0 : std_logic_vector(31 downto 0);
|
|
|
|
variable mask_bit_1 : std_logic_vector(31 downto 0);
|
|
|
|
variable mask_bit_21 : std_logic_vector(31 downto 0);
|
|
|
|
variable mask_bit_31 : std_logic_vector(31 downto 0);
|
|
|
|
variable xor_result : std_logic_vector(0 downto 0);
|
|
|
|
variable shifted : std_logic_vector(31 downto 0);
|
|
|
|
|
|
|
|
variable exponent : std_logic_vector(7 downto 0);
|
|
|
|
variable shifted_modified : std_logic_vector(31 downto 0);
|
|
|
|
variable shifted_exponent : std_logic_vector(31 downto 0);
|
|
|
|
variable shifted_modifiziert : std_logic_vector(31 downto 0);
|
|
|
|
|
|
|
|
|
2023-10-31 07:47:27 +01:00
|
|
|
begin
|
|
|
|
if ( reset = '1' ) then
|
|
|
|
current_task_state <= work.task.TASK_IDLE;
|
|
|
|
index <= 0;
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
--START VALUES:
|
|
|
|
randomisiert := (others => '0');
|
|
|
|
data_valid_intern <= '0';
|
|
|
|
signal_write <= '0';
|
|
|
|
signal_writedata <= ( others => '0' );
|
|
|
|
|
|
|
|
|
2023-10-31 07:47:27 +01:00
|
|
|
elsif ( rising_edge( clk ) ) then
|
|
|
|
current_task_state <= next_task_state;
|
|
|
|
case next_task_state is
|
|
|
|
when work.task.TASK_IDLE =>
|
|
|
|
index <= 0;
|
|
|
|
signal_write <= '0';
|
|
|
|
when work.task.TASK_RUNNING =>
|
|
|
|
index <= index + 1;
|
|
|
|
signal_write <= '1';
|
|
|
|
signal_writedata <= ( others => '0' );
|
|
|
|
when work.task.TASK_DONE =>
|
|
|
|
index <= 0;
|
|
|
|
signal_write <= '0';
|
|
|
|
end case;
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--ZUSTANDSMACHINE LOGIK:
|
|
|
|
--A:
|
|
|
|
current_calc_state <= next_calc_state;
|
|
|
|
data_valid_intern <= '0';
|
|
|
|
signal_write <= '0';
|
|
|
|
case next_calc_state is
|
|
|
|
when CALC_IDLE =>
|
|
|
|
--angle_intern <= (others => '0');
|
|
|
|
index <= 0;
|
|
|
|
when CALC_RANDOMISIEREN =>
|
|
|
|
|
|
|
|
randomisiert := 5;
|
|
|
|
|
|
|
|
if (index == 0) then
|
|
|
|
random_number_word := seed;
|
|
|
|
end if;
|
|
|
|
|
|
|
|
-- Bits extrahieren und XOR durchführen
|
|
|
|
bit_0 := random_number_word(0) and mask_bit_0(0);
|
|
|
|
bit_1 := random_number_word(1) and mask_bit_1(1);
|
|
|
|
bit_21 := random_number_word(21) and mask_bit_21(21);
|
|
|
|
bit_31 := random_number_word(31) and mask_bit_31(31);
|
|
|
|
|
|
|
|
xor_result := bit_0 xor bit_1 xor bit_21 xor bit_31;
|
|
|
|
|
|
|
|
-- Shift um 1 nach rechts
|
|
|
|
shifted := random_number_word(30 downto 0) & '0';
|
|
|
|
shifted(31) := xor_result(0); -- XOR-Ergebnis an das MSB (Bit 31) setzen
|
|
|
|
|
|
|
|
-- Ergebnis ausgeben
|
|
|
|
shifted_result <= shifted;
|
|
|
|
|
|
|
|
|
|
|
|
data_valid_intern <= '1';
|
|
|
|
when CALC_SKALIEREN =>
|
|
|
|
--if(result_valid_intern = '1') then
|
|
|
|
scaled := randomisiert;
|
|
|
|
--scaled := 6;
|
|
|
|
--randomisiert(30 downto 23) := randomisiert(30 downto 23) + ( signed(amplitude(30 downto 23)) - 127);
|
|
|
|
|
|
|
|
--end if;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- Exponent extrahieren
|
|
|
|
exponent := shifted_result(30 downto 23);
|
|
|
|
-- Überprüfen, ob das 7. Bit des Exponenten gesetzt ist
|
|
|
|
if (exponent(7) = '1') then
|
|
|
|
exponent := exponent and "10000001";
|
|
|
|
else
|
|
|
|
exponent := exponent or "01111100";
|
|
|
|
end if;
|
|
|
|
|
|
|
|
-- Verschiebung vorbereiten
|
|
|
|
shifted_modified := shifted_result;
|
|
|
|
shifted_exponent := ('0' & exponent) & (others => '0');
|
|
|
|
|
|
|
|
-- Verschiedene Teile kombinieren
|
|
|
|
shifted_modifiziert := shifted_modified and x"807FFFFF";
|
|
|
|
shifted_modifiziert := shifted_modifiziert or shifted_exponent;
|
|
|
|
|
|
|
|
-- Ergebnis ausgeben
|
|
|
|
scaled_modified_result <= shifted_modifiziert;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
when CALC_IN_FIFO_ABSPEICHERN =>
|
|
|
|
|
|
|
|
if(index > 1) then
|
|
|
|
signal_writedata <= std_logic_vector(scaled);
|
|
|
|
end if;
|
|
|
|
|
|
|
|
signal_write <= '1';
|
|
|
|
|
|
|
|
index <= index + 1;
|
|
|
|
end case;
|
|
|
|
--E
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2023-10-31 07:47:27 +01:00
|
|
|
end if;
|
|
|
|
end process sync;
|
|
|
|
|
|
|
|
task_state <= current_task_state;
|
|
|
|
|
|
|
|
end architecture rtl;
|
2024-01-09 08:41:42 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|