157 lines
4.1 KiB
VHDL
Raw Normal View History

2023-10-31 07:47:27 +01:00
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity add is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;
architecture rtl of add is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
2025-01-08 08:50:24 +01:00
-- Zustände für die Zustandsmaschine zur Berechnung
type SigState is (
SIG_IDLE,
SIG_READ,
SIG_ADD,
SIG_WRITE
);
signal current_sig_state : SigState;
signal next_sig_state : SigState;
signal signal_add_start : std_logic;
signal signal_add_done : std_logic;
2023-10-31 07:47:27 +01:00
begin
2025-01-08 08:50:24 +01:00
u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => signal_add_start,
done => signal_add_done,
A => signal_a_readdata,
B => signal_b_readdata,
sum => signal_writedata
);
2023-10-31 07:47:27 +01:00
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
2025-01-08 08:50:24 +01:00
if ( index = work.task.STREAM_LEN) then
2023-10-31 07:47:27 +01:00
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
2025-01-08 08:50:24 +01:00
sig_state_transitions : process (all) is
begin
next_sig_state <= current_sig_state;
case current_sig_state is
when SIG_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
next_sig_state <= SIG_READ;
end if;
when SIG_READ =>
next_sig_state <= SIG_ADD;
when SIG_ADD =>
if ( signal_add_done = '1') then
next_sig_state <= SIG_WRITE;
end if;
when SIG_WRITE =>
next_sig_state <= SIG_IDLE;
end case;
end process sig_state_transitions;
task_sync : process ( clk, reset ) is
2023-10-31 07:47:27 +01:00
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
2025-01-08 08:50:24 +01:00
--index <= 0;
2023-10-31 07:47:27 +01:00
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
2025-01-08 08:50:24 +01:00
null;
-- signal_write <= '0';
2023-10-31 07:47:27 +01:00
when work.task.TASK_RUNNING =>
2025-01-08 08:50:24 +01:00
null;
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
2023-10-31 07:47:27 +01:00
when work.task.TASK_DONE =>
2025-01-08 08:50:24 +01:00
null;
-- signal_write <= '0';
end case;
end if;
end process task_sync;
sync : process (all) is
begin
if ( reset = '1' ) then
current_sig_state <= SIG_IDLE;
index <= 0;
signal_a_read <= '0';
signal_b_read <= '0';
signal_add_start <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_sig_state <= next_sig_state;
signal_write <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
case next_sig_state is
when SIG_IDLE =>
if (index = 0) then
current_sig_state <= SIG_ADD;
end if;
when SIG_READ =>
signal_a_read <= '1';
signal_b_read <= '1';
when SIG_ADD =>
signal_add_start <= '1';
when SIG_WRITE =>
signal_add_start <= '0';
signal_write <= '1';
index <= index + 1;
2023-10-31 07:47:27 +01:00
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;