Compare commits

..

1 Commits

Author SHA1 Message Date
leitnerti80244
73c4f491fd commit1 2024-01-09 08:49:42 +01:00
8 changed files with 327 additions and 279 deletions

View File

@ -1,26 +1,13 @@
------------------------------------------------------------------------
-- fft
--
-- calculation of FFT magnitudes
-- calculation of FFT magnitude
--
-- Inputs:
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
--
-- Outputs
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
--
--
-- Zahlen aus dem Eingangs-FIFO liegen in 32-Bit Floating Point mit Wertebereich +-16 vor
-- Diese Zahlen müssen in Floating Point auf den Wertebereich +-1 gebracht werden (In Floating Point können Sie durch :16 teilen, wenn Sie den Exponenten der Floating Point Zahl um -4 verkleinern, falls dieser ungleich Null ist)
-- Die auf den Wertebereich +-1 gebrachten Floating Point Zahlen mit to_fixed auf eine Fixpointzahl wandeln
-- Diese Fixpointzahl kann dem FFT IP-Core (fftmain) als Eingangswert übergeben werden (Realteil = skalierte auf Fixpoint gewandelte Zahlen; Imaginärteil=0)
-- Die vom FFT IP-Core berechneten werden (Realteil und Imaginärteil) können direkt dem IP-Core für die FFT Magnitude Berechnung (fft_magnitude_calc) übergeben werden (dieser arbeitet auch in Fixpoint im gleichen Wertebereich)
-- Das Ergebnis des FFT Magnitude Berechnung IP-Cores (fft_magnitude_calc) dann auf Floating Point wandeln (to_float)
-- Diese Floating Point Zahlen dann wieder skalieren mit *16 bzw. *32 für den DC-Anteil um auf den ursprünglichen Wertebereich mit +-16 zu kommen (aus dem FFT IP-Core kommt der DC-Anteil / Index 0 um den Faktor 2 zu klein, deswegen dort *32).
-- (In Floating Point können Sie *16 machen, wenn Sie den Exponenten der Floating Point Zahl um +4 vergrößern, *32 wenn dieser um +5 vergrößert wird, falls der Exponent ungleich Null ist)
-- Die Ergebnisse liegen noch in der bit-reveserd order vor (FFT IP-Core arbeitet nicht in-place) und müssen deswegen noch auf die natural order gebracht werden (https://de.mathworks.com/help/dsp/ug/linear-and-bit-reversed-output-order.html)
-- (z.B: ein Array verwenden, um die Werte zu sortieren)
-- Dann das Ergebnis in den Ausgangsfifo speichern
--
-----------------------------------------------------------------------
library ieee;
@ -32,130 +19,106 @@ library work;
use work.task.all;
use work.float.all;
entity fft is
generic (
-- input data width of real/img part
input_data_width : integer := 32;
-- output data width of real/img part
output_data_width : integer := 32
);
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_read : out std_logic;
signal_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity fft;
architecture rtl of fft is
-- Signale für Task State Machine
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
--signal index : integer range 0 to 2000;
-- component des Verilog IP-Cores fuer die FFT
component fftmain is
port(
clock: in std_logic; -- Master Clock
reset: in std_logic; -- Active High Asynchronous Reset
di_en: in std_logic; -- Input Data Enable
di_re: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Real)
di_im: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Imag)
do_en: out std_logic; -- Output Data Enable
do_re: out std_logic_vector(output_data_width-1 downto 0); -- Output Data (Real)
do_im: out std_logic_vector(output_data_width-1 downto 0) -- Output Data (Imag)
);
end component;
--own signals:
--signal input_re : float(31 downto 0);
-- Signale Input skaliert
signal fft_float_input : signed( 31 downto 0 );
signal fft_float_scaled_input : signed( 31 downto 0 );
--use xxx.lib?; --componenteninstanziierung FFT IP-Core r22sdf
--component foo is
--generic (...)
--port(...);
--end component;
-- Signale fuer FFT-IP Core
-- fft data input signal
signal fft_input_data_enable: std_logic;
signal data_in_re : std_logic_vector (input_data_width-1 downto 0);
signal data_in_im : std_logic_vector (input_data_width-1 downto 0);
-- fft output data
signal fft_output_valid : std_logic;
signal data_out_re : std_logic_vector (output_data_width-1 downto 0);
signal data_out_im : std_logic_vector (output_data_width-1 downto 0);
component fftmain is
generic (
-- input data width of real/img part
input_data_width : integer := 32;
-- output data width of real/img part
output_data_width : integer := 32
);
port (
clk : in std_logic;
reset : in std_logic;
di_en : in std_logic;
di_re : in std_logic_vector(input_data_width-1 downto 0);
di_im : in std_logic_vector(input_data_width-1 downto 0);
do_en : in std_logic;
do_re : in std_logic_vector(input_data_width-1 downto 0);
do_im : in std_logic_vector(input_data_width-1 downto 0)
--task_start : in std_logic;
--task_state : out work.task.State;
--signal_read : out std_logic;
--signal_readdata : in std_logic_vector( 31 downto 0 );
--signal_write : out std_logic;
--signal_writedata : out std_logic_vector( 31 downto 0 )
);
end component fftmain;
---State machine ----------------------------------
TYPE State_type IS (A, B, C, D); -- Define the states
SIGNAL State : State_Type; -- Create a signal that uses
-- the different states
-- Signale fuer Magnitude IP-Core
signal fft_mag_calc_valid : std_logic;
signal fft_mag_calc_result: std_logic_vector (output_data_width-1 downto 0);
-- Signale fuer Ergebnis skaliert
signal data_out_mag_signed_float : signed (output_data_width-1 downto 0);
signal fft_float_scaled : signed( 31 downto 0 );
-- Signale/Array um Ergebnisse der FFT in der natural order zu speichern
signal data_memory : work.reg32.RegArray( 0 to 1023 );
signal index_reversed : std_logic_vector(9 downto 0);
signal index_output_sv : std_logic_vector(9 downto 0);
signal index_output : integer range 0 to 1023;
-- Signal um in den Write FIFO zu schreiben
signal wr_fifo : std_logic;
begin
-----------------------------------------------------------------------------------------------
-- Hier muss der Verilog FFT IP-Core instanziert werden
-----------------------------------------------------------------------------------------------
--u_fft : fftmain
-- port map (
-- clock => , -- system clock
-- reset => , -- Active High Asynchronous Reset
-- di_en => , -- Input Data Enable
-- di_re => , -- Input Data (Real)
-- di_im => , -- Input Data (Imag)
-- do_en => , -- Output Data Enable
-- do_re => , -- Output Data (Real)
-- do_im => -- Output Data (Imag)
-- );
fft_output_valid <= '0';
data_out_re <= (others => '0');
data_out_im <= (others => '0');
u_fft : fftmain
port map (
clock => clk,
reset => fft_reset,
-----------------------------------------------------------------------------------------------
-- Hier muss der VHDL Magnitue IP-COre instanziert werden
-----------------------------------------------------------------------------------------------
-- u_fft_mag_calc : entity work.fft_magnitude_calc
-- port map (
-- clk => , -- system clock
-- reset => , -- Active High Asynchronous Reset
-- input_valid => , -- Input Data Valid
-- input_re => , -- Input Realteil in Fixpoint format
-- input_im => , -- Input Imaginaerteil in Fixpoint format
-- output_valid => , -- Output Data Valid
-- output_magnitude => -- Magnitude Output in Fixpoint format
-- );
di_en => fft_input_data_enable,
di_re => diata_in_re,
di_im => data_in_im,
do_en => fft_output_valid,
do_re => data_out_re,
do_im => data_out_im
);
fft_mag_calc_valid <= '1' when index = 0 else '0';
fft_mag_calc_result <= (others => '0');
u_fft_mag_calc : entity work.fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => fft_output_valid,
input_re => data_out_re,
input_im => data_out_im,
output_valid => fft_mag_calc_valid,
output_magnitude => fft_mag_calc_result
);
-----------------------------------------------------------------------------------------------
-- Zustandsmaschine fuer die Taskabarbeitung (Uebergangsschaltnetz)
-----------------------------------------------------------------------------------------------
task_state_transitions : process (all) is
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
@ -164,7 +127,7 @@ begin
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = 2 ) then
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
@ -174,157 +137,28 @@ begin
end case;
end process task_state_transitions;
-----------------------------------------------------------------------------------------------
-- Zustandsmaschine fuer die eigentliche Ablaufsteuerung fuer die FFT (Uebergangsschaltnetz)
-----------------------------------------------------------------------------------------------
-- Hier soll Ihre Ablaufsteuerung fuer die FFT stehen
-----------------------------------------------------------------------------------------------
-- Ausgangsschaltnetz/Zustandsspeicher fuer die Task und FFT Zustandsmaschine
-----------------------------------------------------------------------------------------------
sync : process ( clk, reset ) is
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
wr_fifo <= '0';
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
wr_fifo <= '0';
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
when work.task.TASK_RUNNING =>
-- Nur damit das Template durchlaueft bei index=0 wird das natural order array mit Nullen gefuellt
-- Bei index=1 werden die 1024 Werte in den Ausgangsfifo geschrieben (Task done bei index=2)
if ( index_output = work.task.STREAM_LEN - 1 ) then
index <= index + 1;
end if;
if index = 1 then
wr_fifo <= '1';
end if;
when work.task.TASK_DONE => null;
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
end process sync;
-----------------------------------------------------------------------------------------------
--
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
-- und im naechsten Takt schon weiter verarbeitet werden können
--
-- Erforderliches Scaling:
--
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
-- multiplication is a simple addition of the exponents.
-- In the following calculation the inputs are scaled from FP in range +-16 to FP in range +-1
-- This means an divsion through 16 -> exponent needs an addition of - 4
--
-- fft_float_input = gelesener Wert vom FIFO (floating point)
-- fft_float_scaled_input = soll skalierter Wert vom FIFO seien (floating point)
-- (Anm. Der FFT IP-Core braucht als Format Fix-Point -> noch eine weitere Wandlung erforderlich)
-----------------------------------------------------------------------------------------------
fft_float_input <= signed(signal_readdata);
fft_float_scaled_input <= fft_float_input; -- Der Eingang muss noch entsprechend skaliert werden
-----------------------------------------------------------------------------------------------
--
-- Skalierung der Eingangswerte welche vom FIFO gelesen werden
-- Dies soll außerhalb eines Prozesses geschehen damit die gelesenen Werte direkt skaliert werden
-- und im naechsten Takt schon weiter verarbeitet werden können
--
-- Erforderliches Scaling:
--
-- By selecting the amplitude as a power of two (e.g. 2 ** 2) the
-- multiplication is a simple addition of the exponents.
-- In the following calculation the inputs are scaled from FP in range +-1 to FP in range +-16
-- the first frequency bin (DC-bin) needs a multiplication by two compared to the other frequency bins (the used fft ip-core divides the result of the first frequency bin by N instead of the correct N/2)
-- This means an divsion through 16 is required for the first frequency bin (DC Part) -> exponent needs an addition of +4
-- This means an divsion through 32 is required for the first frequency bin (DC Part) -> exponent needs an addition of +5
--
-- data_out_mag_signed_float = in float gewandelter Wert der Magnitude Berechnung
-- fft_float_scaled = soll der skalierte float Wert der Magnitude seien
-----------------------------------------------------------------------------------------------
data_out_mag_signed_float <= signed(to_float(fft_mag_calc_result));
fft_float_scaled <= data_out_mag_signed_float; -- Der Ausgang muss noch entsprechend skaliert werden
-----------------------------------------------------------------------------------------------
-- Der FFT-IP Core liefert das Ergebnis nicht in der natuerlichen Reihenfolge deswegen muss eine
-- Umordnung der Ausgangswerte erfolgen
--
-- index_output_sv = std_logic_vector des Integer Ausgangsindex
-- index_reversed = der reversed Ausgangsindex (wird benoetigt fuer damit man die FFT Ergebnisse in die natuerliche Ordnung bringt
--
c_index_output_sv:
index_output_sv <= std_logic_vector(to_unsigned(index_output, index_reversed'length));
c_reversed_index:
index_reversed <= index_output_sv(0) & index_output_sv(1) & index_output_sv(2) & index_output_sv(3) & index_output_sv(4) & index_output_sv(5) & index_output_sv(6) & index_output_sv(7) & index_output_sv(8) & index_output_sv(9);
-----------------------------------------------------------------------------------------------
-- Prozess steuert das hochzaehlen des Ausgang Index
-----------------------------------------------------------------------------------------------
p_number_output_sample: process ( clk, reset ) is
begin
if ( reset = '1' ) then
index_output <= 0;
elsif ( rising_edge( clk ) ) then
-- Ruecksetz Bedingung für index_output
if index_output = 1023 then -- in diese IF-Bedingung ggf. noch den IDLE Zustand Ihrer FFT FSM einbringen
index_output <= 0;
-- index_output hochzaehlen um in natural order im array zu speichern
elsif fft_mag_calc_valid = '1' then
index_output <= index_output + 1;
-- index_output hochzaehlen um Werte im Ausgangsfifo zu speichern
elsif wr_fifo = '1' then
index_output <= index_output + 1;
end if;
end if;
end process p_number_output_sample;
-----------------------------------------------------------------------------------------------
-- Prozess speichert das skalierte Endergbenis iun der natural order
-----------------------------------------------------------------------------------------------
p_output2float_memory: process ( clk, reset) is
begin
if ( reset = '1' ) then
null;
elsif ( rising_edge( clk ) ) then
if fft_mag_calc_valid = '1' then
data_memory(to_integer(unsigned(index_reversed))) <= std_logic_vector(fft_float_scaled);
end if;
end if;
end process p_output2float_memory;
-----------------------------------------------------------------------------------------------
-- Schreiben der berechneten Werte in den FIFO
-----------------------------------------------------------------------------------------------
p_output_fifo: process ( clk, reset ) is
begin
if ( reset = '1' ) then
signal_writedata <= (others => '0');
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
signal_write <= '0';
if wr_fifo = '1' then
signal_writedata <= data_memory(index_output);
signal_write <= '1';
end if;
end if;
end process p_output_fifo;
-- Hier sollen die sonstigen benoetigten Anweisungen stehen
task_state <= current_task_state;
task_state <= current_task_state;
end architecture rtl;

View File

@ -15,9 +15,9 @@ entity sine is
task_start : in std_logic;
task_state : out work.task.State;
step_size : in work.reg32.word;
phase : in work.reg32.word;
amplitude : in work.reg32.word;
step_size : in work.reg32.word; --Parameter, übergeben aus task_sine
phase : in work.reg32.word; --Parameter, übergeben aus task_sine
amplitude : in work.reg32.word; --Parameter, übergeben aus task_sine
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
@ -29,8 +29,139 @@ architecture rtl of sine is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
--own signals:
signal data_valid : std_logic;
signal busy : std_logic;
signal angle : signed(31 downto 0);
signal result_valid : std_logic;
signal sine_value : signed(31 downto 0);
signal output_value : signed(31 downto 0);
signal output_flag : std_logic;
--signal exp : signed(7 downto 0);
--signal tmp : signed(7 downto 0);
---State machine ----------------------------------
TYPE State_type IS (A, B, C, D); -- Define the states
SIGNAL State : State_Type; -- Create a signal that uses
-- the different states
begin
u_float_sine : entity work.float_sine
generic map (
ITERATIONS => 8
)
port map(
clk => clk,
reset => reset,
data_valid => data_valid,
angle => angle,
busy => busy,
result_valid => result_valid,
sine => sine_value
);
PROCESS (clk, reset)
BEGIN
If (reset = '1') THEN --RESET: State to A
data_valid <= '0';
output_flag <= '0';
angle <= x"00000000";--x"1FFFFFFF";
State <= A;
ELSIF rising_edge(clk) THEN -- if there is a rising edge of the
-- clock, then do the stuff below
-- The CASE statement checks the value of the State variable,
-- and based on the value and any other control signals, changes
-- to a new state.
CASE State IS
-- If the current state is A and P is set to 1, then the
-- next state is B
WHEN A => --set data_valid to 1 for one clock cycle
IF index = 0 THEN
angle <= signed(phase);
ELSE
--angle <= angle;--x"1FFFFFFF"; --debug: 1,5 --> should result in sin() = 1
END IF;
IF data_valid ='0' AND current_task_state = TASK_RUNNING THEN
data_valid <= '1';
State <= B;
END IF;
-- If the current state is B and P is set to 1, then the
-- next state is C
WHEN B =>
IF data_valid ='1' THEN
data_valid <= '0';
State <= C;
END IF;
-- If the current state is C and P is set to 1, then the
-- next state is D
WHEN C =>
IF result_valid = '1' AND busy = '0' THEN
--sine_value <= sine;
output_flag <= '1';
data_valid <= '0';
angle <= angle + signed(step_size); --winkel neu zuweisen
State <= D;
END IF;
-- If the current state is D and P is set to 1, then the
-- next state is B.
-- If the current state is D and P is set to 0, then the
-- next state is A.
WHEN D=>
IF data_valid = '0' THEN
output_flag <= '0';
State <= A;
--ELSE
--State <= A;
END IF;
--WHEN others =>
--State <= A;
END CASE;
END IF;
END PROCESS;
--end of state machine______________________________________
--do not change
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
@ -40,17 +171,20 @@ begin
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
if ( index = work.task.STREAM_LEN ) then -- changed from index = work.task.STREAM_LEN - 1
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
--end of no not change
sync : process ( clk, reset ) is
sync : process ( clk, reset , signal_writedata) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
@ -61,17 +195,37 @@ begin
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
--output:
IF output_flag = '1' THEN
index <= index + 1;
signal_write <= '1';
output_value <= sine_value;
output_value(30 downto 23) <= sine_value(30 downto 23) + (signed(amplitude(30 downto 23)) - 127); --change from +2 to correct exponent
--wenn 1: +0, wenn 2: +1, wenn 4:2, wenn 8: 3 = Bit
ELSE
signal_write <= '0';
END IF;
--signal_writedata <= std_logic_vector(to_unsigned(2, signal_writedata'length)); --test
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
signal_writedata <= std_logic_vector(output_value);--x"40800000";--( others => '0' );
end architecture rtl;

View File

@ -2,9 +2,72 @@
#include "system/data_channel.h"
#include "system/float_word.h"
#include <math.h>
#include <stdio.h>
typedef struct {
float value;
} Result;
void generateSinusCurve(float samples_per_period, float phase, float amplitude, Result res[]) {
float delta_phase = 2.0 * M_PI / samples_per_period;
float current_phase = phase;
for (int i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
res[i].value = amplitude * sinf(current_phase);
current_phase += delta_phase;
}
}
int task_sine_run( void * data ) {
// TODO
sine_config * task = (sine_config *) data;
uint32_t data_channel_base = task -> base.sink;
data_channel_clear( data_channel_base );
float_word res;
//float samples_per_period = 32.0;
float samples_per_period = task ->samples_per_periode;
float phase = task-> phase;
float amplitude = task -> amplitude;
Result results[DATA_CHANNEL_DEPTH];
generateSinusCurve(samples_per_period, phase, amplitude, results);
for (int i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
//printf("Wert %d: %f\n", i, results[i].value);
res.value = results[i].value;
data_channel_write( data_channel_base, res.word);
}
return 0;
}

View File

@ -24,7 +24,7 @@ sine_config SINE_CONFIG = {
.sink = DATA_CHANNEL_0_BASE,
.cycle_count = 0 },
.samples_per_periode = 32,
.phase = 0.0,
.phase = 0,
.amplitude = 4.0 };
sine_config COSINE_CONFIG = {

View File

@ -25,8 +25,8 @@ assert_level := error
.PHONY: sim clean
sim: ${verilog_objs} ${vhdl_objs}
@vsim -gCHECK_RESULTS=${CHECK_RESULTS} -voptargs=+acc -c work.${main} -do "set StdArithNoWarnings 1; set NumericStdNoWarnings 1; run -all" \
| ../../scripts/highlight_test_results.sh
@vsim -gCHECK_RESULTS=${CHECK_RESULTS} -voptargs=+acc -c work.${main} -do "set StdArithNoWarnings 1; set NumericStdNoWarnings 1; run -all"
#| ../../scripts/highlight_test_results.sh
gui: ${verilog_objs} ${vhdl_objs}
@vsim -gCHECK_RESULTS=${CHECK_RESULTS} -gGUI_MODE=true -voptargs=+acc work.${main} -do "do vsim.wave; set StdArithNoWarnings 1; set NumericStdNoWarnings 1; run -all"

View File

@ -10,10 +10,9 @@ verilog_srcs = \
vhdl_srcs = \
../../../hardware/system/reg32.vhd \
../../../hardware/system/avalon_slave.vhd \
../test_utility.vhd \
../test_avalon_slave.vhd \
../../hardware/test_data_channel.vhd \
../../../hardware/system/avalon_slave.vhd \
../../../hardware/system/avalon_slave_transitions.vhd \
../../../hardware/system/task.vhd \
../../../hardware/system/hardware_task_control.vhd \
@ -26,6 +25,7 @@ vhdl_srcs = \
../test_utility.vhd \
../test_avalon_slave.vhd \
../test_hardware_task.vhd \
../../hardware/test_data_channel.vhd \
../../data/add_rand.vhd \
../../data/sine.vhd \
../../data/fft.vhd \

View File

@ -63,7 +63,7 @@ architecture test of test_task_fft is
variable writedata_float : float32;
variable writedata_real : real;
variable expected_real : real;
variable abs_err : real := 0.6;
variable abs_err : real := 0.5e-1;
variable result : data_array( 0 to work.task.STREAM_LEN - 1 );
variable result_fft : data_array( 0 to work.task.STREAM_LEN - 1 );
file data_file : text;
@ -110,13 +110,11 @@ architecture test of test_task_fft is
std.textio.write( data_file_fft, "]" & LF );
file_close( data_file_fft );
index := 0;
while index < STREAM_LEN loop
writedata_float := to_float( result( index ) );
writedata_real := to_real( writedata_float );
expected_real := work.fft_data.expected( index );
assert_near( writedata_real, expected_real, abs_err );
index := index + 1;
end loop;
file_open( data_file_fft_bit_reversed, "fft_out_bit_reversed.py", write_mode );

View File

@ -1,2 +1 @@
add wave -position end sim:/test_task_fft/dut/*
add wave -position end sim:/test_task_fft/dut/u_fft/*