library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity rand is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; seed : in work.reg32.word; signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity rand; architecture rtl of rand is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; -- Register für den LFSR Zustand signal lfsr_reg : std_logic_vector(31 downto 0); begin task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is variable v_feedback : std_logic; variable v_lfsr_next : std_logic_vector(31 downto 0); variable v_send_cycle : boolean := true; -- toggle um signal_write nur einen Takt auszugeben begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; lfsr_reg <= (others => '0'); signal_write <= '0'; signal_writedata <= (others => '0'); v_send_cycle := true; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; lfsr_reg <= seed; v_send_cycle := true; -- Reset toggle für nächsten Start when work.task.TASK_RUNNING => if v_send_cycle = true then index <= index + 1; -- 1. LFSR Feedback berechnen (Polynom x^31 + x^21 + x^1 + 1) v_feedback := lfsr_reg(31) xor lfsr_reg(21) xor lfsr_reg(1) xor lfsr_reg(0); -- 2. Schieben und neues Bit einfügen v_lfsr_next := lfsr_reg(30 downto 0) & v_feedback; -- Register aktualisieren für den nächsten Takt lfsr_reg <= v_lfsr_next; -- 3. Daten schreiben und Bit-Manipulation signal_write <= '1'; -- Wir nutzen hier v_lfsr_next, damit der geschriebene Wert -- dem aktuellen Berechnungsschritt entspricht. if v_lfsr_next(30) = '1' then -- Fall A: Bit 30 ist 1. Bits 29-24 löschen -- Maske: AND mit 1100 0000 ... (0xC0...) signal_writedata <= v_lfsr_next and x"C0FFFFFF"; else -- Fall B: Bit 30 ist 0. Bits 29-25 setzen -- Maske: OR mit 0011 1110 ... (0x3E...) signal_writedata <= v_lfsr_next or x"3E000000"; end if; v_send_cycle := false; else signal_write <= '0'; v_send_cycle := true; end if; when work.task.TASK_DONE => index <= 0; signal_write <= '0'; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;