library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity rand is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; seed : in work.reg32.word; signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity rand; architecture rtl of rand is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal f_start : std_logic := '0'; signal f_done : std_logic := '0'; signal f_A : std_logic_vector(31 downto 0) := (others => '0'); signal f_B : std_logic_vector(31 downto 0) := (others => '0'); signal f_sum : std_logic_vector(31 downto 0) := (others => '0'); begin ---------------------------------------------------------------------------------------------------------------------------------------------------------- u_float_rand : entity work.float_rand --Zugriff auf die Float_ datei port map ( clk => clk, reset => reset, start => f_start, done => f_done, A => f_A, B => f_B, sum => f_sum ); -------------------------------------------------------------------------------------------------------------------------- task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; ----------------------------------------------------------------------------------------------------------------------------------------------------- sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; f_start <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; f_A <= (others => '0'); f_B <= (others => '0'); elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; signal_a_read <= '0'; signal_b_read <= '0'; f_start <= '0'; signal_write <= '0'; signal_writedata <= (others => '0'); when work.task.TASK_RUNNING => if f_start = '0' and f_done = '0' then --FIFO lesen signal_a_read <= '1'; signal_b_read <= '1'; f_A <= signal_a_readdata; f_B <= signal_b_readdata; f_start <= '1'; signal_write <= '0'; elsif f_start = '1' and f_done = '0' then --Startet nur einen tAKT signal_a_read <= '0'; signal_b_read <= '0'; elsif f_start ='1' and f_done = '1' then --Ergebnisse speiecern f_start <= '0'; signal_write <= '1'; signal_writedata <= f_sum; --signal_write <= '0'; --signal_writedata <= ( others => '0' ); --Index erhöhen --if index < work.task.STREAM_LEN -1 then index <= index + 1; --end if; else signal_write <= '0'; end if; --index <= index + 1; -- signal_write <= '1'; -- signal_writedata <= ( others => '0' ); when work.task.TASK_DONE => index <= 0; signal_write <= '0'; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;