library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; u_add: entity word.add port map ( clk => clk, reset => reset, task_start => task_start, task_state => task_state, signal_a_read => signal_a_read, signal_a_readdata => signal_a_readdata, signal_b_read => signal_b_read, signal_b_readdata => signal_b_readdata, signal_write => signal_write, signal_writedata => signal_writedata ); architecture rtl of add is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal state : integer range 0 to 255; signal reset : integer range 0 to 7; signal start : integer range 0 to 7; signal done : integer range 0 to 7; signal A : STD_LOGIC_VECTOR(31 downto 0); signal B : STD_LOGIC_VECTOR(31 downto 0); signal sum : STD_LOGIC_VECTOR(31 downto 0); begin u_float_add : entity work.float_add port map ( clk => clk, reset => reset, start => start, done => done, A => A, B => B, sum => sum ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; signal_a_read <= 'O'; signal_b_read <= 'O'; signal_write <= 'O'; signal_Writedata <= (others => '0'); index <= 0; state <= 0; sum <= 0; done <= 0; start <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; when work.task.TASK_RUNNING => index <= index + 1; --signal_a_read <= '1' ; --signal_b_read <= '1' ; signal_write <= '1'; signal_writedata <= ( others => '0' ); when work.task.TASK_DONE => index <= 0; signal_write <= '0'; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;