library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; architecture rtl of add is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; SIGNAL float_sum : STD_LOGIC_VECTOR(31 downto 0); SIGNAL fa_start: std_logic; SIGNAl fa_done: std_logic; begin u_float_add : entity work.float_add port map( clk => clk, reset => reset, start => fa_start, done => fa_done, A => signal_a_readdata, B => signal_b_readdata, sum => float_sum ); -- Zustandsübergangslogik: -- in TASK_RUNNING erst dann nach TASK_DONE, wenn die letzte Addition fertig ist task_state_transitions : process ( current_task_state, task_start, index, fa_done ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( fa_done = '1' and index = work.task.STREAM_LEN -1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; signal_write <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; -- signal_writedata <= (others => '0'); fa_start <= '0'; elsif ( rising_edge( clk ) ) then -- Zustand updaten current_task_state <= next_task_state; case current_task_state is when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; -- signal_writedata <= (others => '0'); fa_start <= '0'; when work.task.TASK_RUNNING => -- Standardwerte im RUNNING-Zustand signal_write <= '0'; -- nur bei fertig berechneter Summe auf '1' signal_a_read <= '0'; signal_b_read <= '0'; if (fa_start = '0' and fa_done = '0') then -- neue Addition starten: Daten anfordern und start setzen signal_a_read <= '1'; signal_b_read <= '1'; fa_start <= '1'; elsif (fa_start = '1' and fa_done = '1') then -- Ergebnis ist gültig (OUTPUT_STATE von float_add) signal_writedata <= float_sum; signal_write <= '1'; -- ein Sample fertig index <= index + 1; -- start zurücknehmen, damit float_add wieder in WAIT_STATE geht fa_start <= '0'; end if; when work.task.TASK_DONE => index <= 0; signal_write <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; signal_writedata <= (others => '0'); fa_start <= '0'; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;