library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector(31 downto 0); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector(31 downto 0); signal_write : out std_logic; signal_writedata : out std_logic_vector(31 downto 0) ); end entity add; architecture rtl of add is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; type AddState is ( ADD_IDLE, ADD_READ_FIFO, ADD_LATCH_INPUTS, ADD_START_CALC, ADD_WAIT_DONE, ADD_STORE_RESULT ); signal current_add_state : AddState; signal next_add_state : AddState; signal start_proc : std_logic; signal done : std_logic; signal A : std_logic_vector(31 downto 0); signal B : std_logic_vector(31 downto 0); signal sum : std_logic_vector(31 downto 0); begin u_float_add : entity work.float_add port map ( clk => clk, reset => reset, start => start_proc, done => done, A => A, B => B, sum => sum ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; add_state_transitions : process ( current_add_state, current_task_state, done ) is begin next_add_state <= current_add_state; if (current_task_state /= work.task.TASK_RUNNING) then next_add_state <= ADD_IDLE; else case current_add_state is when ADD_IDLE => next_add_state <= ADD_READ_FIFO; when ADD_READ_FIFO => next_add_state <= ADD_LATCH_INPUTS; when ADD_LATCH_INPUTS => next_add_state <= ADD_START_CALC; when ADD_START_CALC => next_add_state <= ADD_WAIT_DONE; when ADD_WAIT_DONE => if done = '1' then next_add_state <= ADD_STORE_RESULT; end if; when ADD_STORE_RESULT => next_add_state <= ADD_READ_FIFO; end case; end if; end process; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; current_add_state <= ADD_IDLE; signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; signal_writedata <= (others => '0'); start_proc <= '0'; A <= (others => '0'); B <= (others => '0'); elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; current_add_state <= next_add_state; signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; start_proc <= '0'; case next_task_state is when work.task.TASK_IDLE => index <= 0; when work.task.TASK_RUNNING => if current_add_state = ADD_STORE_RESULT then index <= index + 1; end if; when work.task.TASK_DONE => index <= 0; end case; case next_add_state is when ADD_IDLE => null; when ADD_READ_FIFO => signal_a_read <= '1'; signal_b_read <= '1'; when ADD_LATCH_INPUTS => A <= signal_a_readdata; B <= signal_b_readdata; when ADD_START_CALC => start_proc <= '1'; when ADD_WAIT_DONE => start_proc <= '1'; null; when ADD_STORE_RESULT => signal_write <= '1'; signal_writedata <= sum; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;