library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity crc is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_read : out std_logic; signal_readdata : in std_logic_vector(31 downto 0); signal_write : out std_logic; signal_writedata: out std_logic_vector(31 downto 0) ); end entity crc; architecture rtl of crc is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN := 0; constant CRC_INIT : std_logic_vector(31 downto 0) := X"FFFFFFFF"; constant CRC_POLY : std_logic_vector(31 downto 0) := X"EDB88320"; signal crc : std_logic_vector(31 downto 0) := CRC_INIT; signal data_reg : std_logic_vector(31 downto 0); signal data_valid : std_logic := '0'; begin task_state <= current_task_state; -- TASK STATE MACHINE (VORLAGE - nicht ändern!) task_state_transitions: process(current_task_state, task_start, index) begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if task_start = '1' then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => -- WICHTIG: Schreiben nach 1024 Werten (index 0-1023) if index = 1023 then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if task_start = '1' then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process; -- Data Channel Control signal_read <= '1' when current_task_state = work.task.TASK_RUNNING and data_valid = '0' and index < 1024 else '0'; signal_write <= '1' when current_task_state = work.task.TASK_DONE else '0'; signal_writedata <= crc xor X"FFFFFFFF"; -- Final XOR -- Haupt-Sync Process (identisch zur SW-Version) sync: process(clk, reset) variable temp_crc : std_logic_vector(31 downto 0); begin if reset = '1' then current_task_state <= work.task.TASK_IDLE; index <= 0; crc <= CRC_INIT; data_reg <= (others => '0'); data_valid <= '0'; elsif rising_edge(clk) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; crc <= CRC_INIT; data_valid <= '0'; when work.task.TASK_RUNNING => -- 1. DATA LESEN (Timing: signal_read='1' -> NEXT CLK data_valid) if signal_read = '1' then data_reg <= signal_readdata; data_valid <= '1'; end if; -- 2. CRC UPDATE (zlib: XOR dann 32x bitweise LSB-first) if data_valid = '1' then temp_crc := crc xor data_reg; crc <= temp_crc; -- 32 Bit LSB-first Verarbeitung in EINEM Takt (wie SW) for i in 0 to 31 loop if temp_crc(0) = '1' then temp_crc := std_logic_vector(shift_right(unsigned(temp_crc), 1)) xor CRC_POLY; else temp_crc := std_logic_vector(shift_right(unsigned(temp_crc), 1)); end if; end loop; crc <= temp_crc; data_valid <= '0'; index <= index + 1; end if; when work.task.TASK_DONE => index <= 0; data_valid <= '0'; end case; end if; end process; end architecture rtl;