library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.float.all; use work.task.all; entity sine is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; step_size : in work.reg32.word; phase : in work.reg32.word; amplitude : in work.reg32.word; signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity sine; architecture rtl of sine is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal valid_gen : std_logic; signal angle_gen : signed(31 downto 0); signal busy_gen : std_logic; signal result_valid_gen : std_logic; signal sine_gen : signed(31 downto 0); signal sine_sign : std_logic; -- Vorzeichen signal sine_exponent : signed(7 downto 0); -- Exponent signal sine_mantissa : std_logic_vector(22 downto 0); -- Mantisse signal scaled_exponent : signed(7 downto 0); -- Skalierter Exponent signal scaled_sine : std_logic_vector(31 downto 0); -- Ergebnis type CalcState is ( CALC_IDLE, CALC_GEN, CALC_WAIT, CALC_STORE, CALC_STORE_RESULT ); signal current_calc_state : CalcState; signal next_calc_state : CalcState; begin u_float_sine : entity work.float_sine generic map ( ITERATIONS => 8 ) port map ( clk => clk, reset => reset, data_valid => valid_gen, angle => angle_gen, busy => busy_gen, result_valid => result_valid_gen, sine => sine_gen ); task_state_transitions : process ( all ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; calc_state_transistions : process ( all ) is begin next_calc_state <= current_calc_state; case current_calc_state is when CALC_IDLE => if current_task_state = work.task.TASK_RUNNING then next_calc_state <= CALC_GEN; end if; when CALC_GEN => next_calc_state <= CALC_WAIT; when CALC_WAIT => next_calc_state <= CALC_STORE; when CALC_STORE => if result_valid_gen = '1' and busy_gen = '0' then next_calc_state <= CALC_STORE_RESULT; else next_calc_state <= CALC_STORE; end if; when CALC_STORE_RESULT => next_calc_state <= CALC_IDLE; end case; end process calc_state_transistions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; if current_task_state = work.task.TASK_RUNNING then end if; if current_calc_state = CALC_STORE_RESULT then index <= index + 1; end if; end if; end process sync; sine_sign <= sine_gen(31); sine_exponent <= signed(sine_gen(30 downto 23)); sine_mantissa <= std_logic_vector(sine_gen(22 downto 0)); scaled_exponent <= sine_exponent + (signed(amplitude(30 downto 23)) - 127); scaled_sine <= sine_sign & std_logic_vector(scaled_exponent) & sine_mantissa; calc_sync : process ( clk, reset ) is begin if (reset = '1') then current_calc_state <= CALC_IDLE; valid_gen <= '0'; angle_gen <= (others => '0'); signal_write <= '0'; signal_writedata <= (others => '0'); elsif (rising_edge(clk)) then current_calc_state <= next_calc_state; signal_write <= '0'; case current_calc_state is when CALC_IDLE => valid_gen <= '0'; if current_task_state = work.task.TASK_IDLE then angle_gen <= signed(phase); end if; when CALC_GEN => if next_calc_state = CALC_WAIT then valid_gen <= '1'; angle_gen <= angle_gen + signed(step_size); end if; when CALC_WAIT => valid_gen <= '0'; when CALC_STORE => null; when CALC_STORE_RESULT => signal_write <= '1'; signal_writedata <= scaled_sine; end case; end if; end process calc_sync; task_state <= current_task_state; end architecture rtl;