library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.float.all; use work.task.all; entity sine is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; step_size : in work.reg32.word; phase : in work.reg32.word; amplitude : in work.reg32.word; signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity sine; architecture rtl of sine is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal angle_reg : signed(31 downto 0); signal step_size_s : signed(31 downto 0); signal phase_s : signed(31 downto 0); signal fs_data_valid : std_logic; signal fs_busy : std_logic; signal fs_result_valid: std_logic; signal fs_sine : signed(31 downto 0); signal sine_sample : std_logic_vector(31 downto 0); signal fs_result_valid_d : std_logic; begin u_float_sine : entity work.float_sine generic map ( ITERATIONS => 8 ) port map ( clk => clk, reset => reset, data_valid => fs_data_valid, busy => fs_busy, result_valid => fs_result_valid, angle => angle_reg, sine => fs_sine ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is variable sine_word : std_logic_vector(31 downto 0); variable sign_bit : std_logic; variable exp_bits : unsigned(30 downto 23); variable man_bits : std_logic_vector(22 downto 0); variable amp_exp : unsigned(30 downto 23); variable new_exp : unsigned(30 downto 23); begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; angle_reg <= (others => '0'); step_size_s <= (others => '0'); phase_s <= (others => '0'); fs_data_valid <= '0'; signal_write <= '0'; signal_writedata <= (others => '0'); sine_sample <= (others => '0'); fs_result_valid_d <= '0'; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; fs_data_valid <= '0'; signal_write <= '0'; fs_result_valid_d <= fs_result_valid; case next_task_state is when work.task.TASK_IDLE => index <= 0; step_size_s <= signed( step_size ); phase_s <= signed( phase ); angle_reg <= signed( phase ); when work.task.TASK_RUNNING => if (index = 0 and fs_busy = '0') then fs_data_valid <= '1'; end if; if (fs_result_valid = '1' and fs_result_valid_d = '0') then sine_word := std_logic_vector(fs_sine); sign_bit := sine_word(31); exp_bits := unsigned(sine_word(30 downto 23)); man_bits := sine_word(22 downto 0); amp_exp := unsigned(amplitude(30 downto 23)); new_exp := exp_bits + (amp_exp - to_unsigned(127, 8)); sine_word(31) := sign_bit; sine_word(30 downto 23) := std_logic_vector(new_exp); sine_word(22 downto 0) := man_bits; signal_write <= '1'; signal_writedata <= sine_word; angle_reg <= angle_reg + step_size_s; index <= index + 1; fs_data_valid <= '1'; end if; when work.task.TASK_DONE => index <= 0; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;