library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; -- Anlegen der Variablen des Programms entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; -- Signale anlegen architecture rtl of add is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal index_run :integer range 0 to 2; signal start_value : std_logic; signal done_value : std_logic; signal write_value : std_logic_vector( 31 downto 0 ); begin -- Instanziierung der float_add.vhd u_float_add : entity work.float_add port map( clk => clk, reset => reset, start => start_value, done => done_value, a => signal_a_readdata, b => signal_b_readdata, sum => write_value ); -- Zustandsautomat fuer die Zustandsswechsel task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; -- Zustandautomat fuer die Berechnung sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; -- alle Signale in der Reset Bedingung initialisieren start_value <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is -- idle when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; -- running when work.task.TASK_RUNNING => case index_run is when 0 => signal_writedata <= ( others => '0' ); start_value <= '1'; index_run <= index_run + 1; when 1 => if(done_value = '1') then start_value <= '0'; signal_write <= '1'; signal_writedata <= write_value; signal_a_read <= '1'; signal_b_read <= '1'; index_run <= index_run + 1; end if; when 2 => signal_write <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; index_run <= 0; index <= index + 1; end case; -- done when work.task.TASK_DONE => index <= 0; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;