library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; architecture rtl of add is -- State Machine für Ansteuerung des ADD-IP Cores. type AddState is ( ADD_STATE_IDLE, ADD_STATE_CALCULATE, ADD_STATE_WRITE, ADD_STATE_DONE ); -- Instanziierung float_add component component float_add port ( clk : in std_logic; reset : in std_logic; start : in std_logic; A : in std_logic_vector( 31 downto 0 ); B : in std_logic_vector( 31 downto 0 ); done : out std_logic; sum : out std_logic_vector( 31 downto 0 ) ); end component float_add; signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; -- Eigene Steuersignale. signal value_add_start : std_logic; signal value_add_A : std_logic_vector( 31 downto 0 ); signal value_add_B : std_logic_vector( 31 downto 0 ); signal value_add_done : std_logic; signal value_add_sum : std_logic_vector( 31 downto 0 ); signal add_state : AddState := ADD_STATE_IDLE; signal flag_index : bit; begin float_adder : float_add port map ( clk => clk, reset => reset, start => value_add_start, -- Wert von A wird in value_add_A geschrieben. A => value_add_A, -- Wert von B wird in value_add_B geschrieben. B => value_add_B, -- Signal wenn Addition fertig berechnet. done => value_add_done, -- Summe der Addition wird in write_data geschrieben sum => value_add_sum ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; when work.task.TASK_RUNNING => if ( flag_index = '1' ) then index <= index + 1; end if; when work.task.TASK_DONE => index <= 0; end case; end if; end process sync; add : process (clk, reset) is begin -- Bei Reset alle Signale zurücksetzen if ( reset = '1' ) then signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; signal_writedata <= ( others => '0'); value_add_start <= '0'; value_add_A <= ( others => '0'); value_add_B <= ( others => '0'); -- Für jeden Takt add_state Zustandsmaschine aufrufen. elsif ( rising_edge( clk ) ) then case add_state is -- IDLE STATE: Wenn Task im state TASK_RUNNING ist, soll add_state starten. when ADD_STATE_IDLE => if ( current_task_state = work.task.TASK_RUNNING ) then add_state <= ADD_STATE_CALCULATE; end if; -- CALCULATE: Read signale instanziieren und lesen when ADD_STATE_CALCULATE => signal_a_read <= '1'; signal_b_read <= '1'; value_add_start <= '1'; value_add_A <= signal_a_readdata; value_add_B <= signal_b_readdata; if ( value_add_done = '1' ) then add_state <= ADD_STATE_WRITE; end if; -- WRITE: when ADD_STATE_WRITE => signal_write <= '1'; signal_writedata <= value_add_sum; value_add_start <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; flag_index <= '1'; add_state <= ADD_STATE_DONE; when ADD_STATE_DONE => signal_write <= '0'; flag_index <= '0'; add_state <= ADD_STATE_IDLE; end case; end if; end process add; task_state <= current_task_state; end architecture rtl;