grimmad102979 0baa59d050 fertig
2025-12-16 09:58:21 +01:00

165 lines
4.7 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity add is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;
architecture rtl of add is
type AddState is (z0_ADD_IDLE, z1_ADD_READ_FIFO, z2_ADD_CALC, z3_ADD_STORE_RESULT);
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
-- Interne Signale für die Verbindung zur float_add Komponente
signal internal_start : std_logic;
signal internal_done : std_logic;
signal internal_sum : std_logic_vector(31 downto 0);
-- Signal für den internen Additions-Status
signal current_calc_state : AddState;
begin
u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => internal_start,
done => internal_done,
A => signal_a_readdata,
B => signal_b_readdata,
sum => internal_sum
);
task_state_transition : process (current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if (task_start = '1') then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if (index = work.task.STREAM_LEN) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if (task_start = '1') then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transition;
sync : process (clk, reset) is
begin
if (reset = '1') then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
-- Reset
current_calc_state <= z1_ADD_READ_FIFO;
internal_start <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
elsif (rising_edge(clk)) then
current_task_state <= next_task_state;
-- defaults für Steuersignale
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
internal_start <= '0';
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
--signal_write <= '0';
current_calc_state <= z1_ADD_READ_FIFO; -- Reset für nächsten Lauf
when work.task.TASK_RUNNING =>
--index <= index + 1;
--signal_write <= '1';
--signal_writedata <= (others => '0');
-- Sub State Machine
case current_calc_state is
when z1_ADD_READ_FIFO =>
-- Daten aus den FIFOs anfordern
if (index < work.task.STREAM_LEN) then
current_calc_state <= z2_ADD_CALC;
end if;
when z2_ADD_CALC =>
internal_start <= '1';
-- Warten bis float_add 'done' meldet
if (internal_done = '1') then
internal_start <= '0'; -- Trigger wegnehmen
current_calc_state <= z3_ADD_STORE_RESULT;
else
-- Bleibe hier und warte
current_calc_state <= z2_ADD_CALC;
end if;
when z3_ADD_STORE_RESULT =>
-- Ergebnis schreiben
signal_write <= '1';
signal_writedata <= internal_sum;
-- nicht in Schritt z1_ADD_READ_FIFO!!
signal_a_read <= '1';
signal_b_read <= '1';
-- Index erhöhen
index <= index + 1;
-- Zurück zum Lesen für das nächste Paar
current_calc_state <= z1_ADD_READ_FIFO;
when others =>
current_calc_state <= z1_ADD_READ_FIFO;
end case;
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;