grimmad102979 0baa59d050 fertig
2025-12-16 09:58:21 +01:00

164 lines
5.0 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.float.all;
use work.task.all;
entity sine is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
step_size : in work.reg32.word;
phase : in work.reg32.word;
amplitude : in work.reg32.word;
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity sine;
architecture rtl of sine is
type SineState is(S_IDLE, S_CALC_START, S_WAIT_CALC, S_WRITE);
signal current_sine_state : SineState;
signal s_data_valid : std_logic;
signal s_angle : signed(31 downto 0);
signal s_busy : std_logic;
signal s_result_valid : std_logic;
signal s_sine_out : signed(31 downto 0);
signal current_angle_reg : unsigned(31 downto 0);
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
begin
u_float_sine : entity work.float_sine
generic map (
ITERATIONS => 8
)
port map (
clk => clk,
reset => reset,
data_valid => s_data_valid,
angle => s_angle,
busy => s_busy,
result_valid => s_result_valid,
sine => s_sine_out
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
variable v_exp_sine : unsigned(7 downto 0);
variable v_exp_amp : unsigned(7 downto 0);
variable v_exp_new : unsigned(7 downto 0);
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
signal_write <= '0';
signal_writedata <= (others => '0');
s_data_valid <= '0';
s_angle <= (others => '0');
current_angle_reg <= (others => '0');
current_sine_state <= S_IDLE;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
signal_write <= '0';
s_data_valid <= '0';
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
current_sine_state <= S_CALC_START;
current_angle_reg <= unsigned(phase);
when work.task.TASK_RUNNING =>
case current_sine_state is
when S_CALC_START =>
s_data_valid <= '1';
s_angle <= signed(current_angle_reg);
if s_busy = '1' then
s_data_valid <= '0'; -- startpulse beenden
index <= index + 1;
current_sine_state <= S_WAIT_CALC;
end if;
when S_WAIT_CALC =>
if s_result_valid = '1' and s_busy = '0' then
current_sine_state <= S_WRITE;
end if;
when S_WRITE =>
v_exp_sine := unsigned(s_sine_out(30 downto 23)); -- nur Exponent (30-23)
v_exp_amp := unsigned(amplitude(30 downto 23));
-- (V)errechnen:E_neu = E_sin + E_amp - 127 (127 = bias/verschiebung)
v_exp_new := v_exp_sine + v_exp_amp - 127;
-- ergebnis der mul von sinus und amplitude wieder zusammenstzen
-- da amp immer positiv ist, wird nur vorzeichen von s_sine_out verwendet
signal_writedata <= std_logic(s_sine_out(31)) &
std_logic_vector(v_exp_new) &
std_logic_vector(s_sine_out(22 downto 0));
signal_write <= '1';
current_angle_reg <= current_angle_reg + unsigned(step_size);
current_sine_state <= S_CALC_START;
when others =>
current_sine_state <= S_CALC_START;
end case;
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;