2024-11-27 10:19:31 +01:00

166 lines
5.0 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.float.all;
use work.task.all;
entity sine is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
step_size : in work.reg32.word;
phase : in work.reg32.word;
amplitude : in work.reg32.word;
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity sine;
architecture rtl of sine is
signal current_task_state : work.task.State; --multiple sources
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN; --multiple sources
--Selbst angelegte Signal:
signal data_valid_flag : std_logic;
signal busy_flag : std_logic;
signal result_valid_flag : std_logic;
signal angle_sig : signed( 31 downto 0);
signal ergebnis : signed( 31 downto 0 );
signal ampl_sig : signed( 31 downto 0 );
--Zustände für die Zustandsmaschine für die Berechnung
type CalcState is (
CALC_IDLE,
CALC_START,
CALC_SINE,
CALC_STORE_RESULT
);
--Signale für die Zustandsmaschine für die Berechnung
signal current_calc_state : CalcState;
signal next_calc_state : CalcState;
begin
u_float_sine : entity work.float_sine -- Das hier ist der Core!
generic map (
ITERATIONS => 8
)
port map (
clk => clk,
reset => reset,
data_valid => data_valid_flag, --# load new input data
busy => busy_flag, --# generating new result
result_valid => result_valid_flag, --# flag when result is valid
angle => angle_sig, -- angle in brads (2**size brads = 2*pi radians)
sine => ergebnis --Hierzu nachfragen
);
--Bei diesem task nichts ändern!
task_state_transitions : process ( all ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
--Übergangsschaltnetz der Zustandsmaschine für die Berechnung ###Fertig
calc_state_transitions: process (all) is
begin
next_calc_state <= current_calc_state;
case current_calc_state is
when CALC_IDLE=>
if (current_task_state= work.task.TASK_RUNNING) then
next_calc_state <= CALC_START;
end if;
when CALC_START=>
next_calc_state <= CALC_SINE;
when CALC_SINE =>
if (result_valid_flag = '1' and busy_flag = '0') then --or falling_edge( busy) ?
next_calc_state <= CALC_STORE_RESULT;
end if;
when CALC_STORE_RESULT =>
if ( index = work.task.STREAM_LEN ) then
next_calc_state <= CALC_IDLE;
else
next_calc_state <= CALC_START;
end if;
end case;
end process calc_state_transitions;
--Zustandsspeicher und Ausgangsschaltnetz zu der Steuerung der Tasks
task_sync : process (clk, reset) is
begin
if (reset = '1') then
current_task_state <= work.task.TASK_IDLE;
elsif (rising_edge( clk)) then
current_task_state <= next_task_state;
case next_task_state is
when work.task. TASK_IDLE => null;
when work.task. TASK_RUNNING => null;
when work.task. TASK_DONE => null;
end case;
end if;
end process task_sync;
--Zustandsspeicher und Ausgangsschaltnetz zu Berechnung
sync : process (clk, reset) is
begin
if (reset = '1') then
index <= 0;
data_valid_flag <= '0';
current_calc_state <= CALC_IDLE;
--ergebnis <= (others => '0'); --Wird von IP Core gesteuert und darf deshalb hier nicht getrieben werden
signal_writedata <= (others => '0');
signal_write <= '0';
angle_sig <= (others => '0');
elsif (rising_edge( clk)) then
current_calc_state <= next_calc_state;
case next_calc_state is
when CALC_IDLE =>
data_valid_flag <= '0';
signal_write <= '0';
angle_sig <= signed (phase);
ampl_sig <= signed (amplitude);
when CALC_START =>
data_valid_flag <= '1';
signal_write <= '0';
angle_sig <= angle_sig + signed(step_size); --step_size = 2 * PI / 32
when CALC_SINE => --hier Berechnung mit IP Core?
data_valid_flag <= '0';
when CALC_STORE_RESULT =>
index <= index + 1;
signal_write <= '1';
--Berechne float multiplikation zu Fuss. Exponent + Exponent usw.
signal_writedata <= std_logic_vector( ergebnis(31 downto 31) & (ergebnis(30 downto 23) + (signed(ampl_sig(30 downto 23)) - 127)) & ergebnis(22 downto 0));
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;