2024-12-18 09:52:29 +01:00

177 lines
4.5 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity add is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;
architecture rtl of add is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
type AddState is(
ADD_IDLE,
ADD_READ,
ADD_CALC,
ADD_STORERESULT
);
signal curAddState : ADDState;
signal nextAddState : ADDState;
signal a : std_logic_vector (31 downto 0);
signal b : std_logic_vector (31 downto 0);
signal startcore : std_logic;
signal donecore : std_logic;
signal sumcore : std_logic_vector (31 downto 0);
begin
u_float_add : entity work.float_add
port map(
clk => clk,
reset => reset,
start => startcore,
done => donecore,
A => a,
B => b,
sum => sumcore
);
--Zuletzt haben wir den State transitions prozess angelegt. Ziegler nachfragen
add_state_transitions : process (all) is
begin
--if(reset ='1' and rising_edge(clk)) then
nextAddState <= curAddState;
case curAddState is
when ADD_IDLE =>
if(current_task_state = work.task.TASK_RUNNING) then
nextAddState <= ADD_CALC;
end if;
when ADD_READ =>
nextAddState <= ADD_CALC;
when ADD_CALC => Null;
if(donecore = '1') then
nextAddState <=ADD_STORERESULT;
end if;
when ADD_STORERESULT =>
nextAddState <= ADD_READ;
when others =>
nextAddState <= curAddState;
end case;
end process add_state_transitions;
add_process : process (clk,reset) is
begin
if(reset = '1') then
curADDState <= ADD_CALC;
index <= 0;
signal_write <='0';
signal_a_read <='0';
signal_b_read <='0';
startcore <= '0';
signal_writedata <= (others => '0');
b<= (others => '0');
a<= (others => '0');
elsif(rising_edge(clk)) then
curAddState <= nextAddState;
Case curAddState is
when ADD_IDLE =>
NULL;
when ADD_READ =>
signal_write <= '0';
signal_a_read <= '1';
signal_b_read <= '1';
when ADD_CALC =>
signal_a_read <= '0';
signal_b_read <= '0';
a <= signal_a_readdata;
b <= signal_b_readdata;
startcore <= '1';
when ADD_STORERESULT =>
startcore <= '0';
signal_writedata <= sumcore;
signal_write <= '1';
index <= index+1;
when others =>Null;
end case;
if(current_task_state=work.task.TASK_DONE)then
index <= 0;
signal_write <= '0';
end if;
end if;
end process add_process;
--
task_state_transitions : process ( all ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
-- index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
NULL;
-- index <= 0;
-- signal_write <= '0';
when work.task.TASK_RUNNING =>
NULL;
-- index <= index + 1;
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
NULL;
-- index <= 0;
-- signal_write <= '0';
end case;
--test
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;