leitnerti80244 73c4f491fd commit1
2024-01-09 08:49:42 +01:00

232 lines
5.5 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.float.all;
use work.task.all;
entity sine is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
step_size : in work.reg32.word; --Parameter, übergeben aus task_sine
phase : in work.reg32.word; --Parameter, übergeben aus task_sine
amplitude : in work.reg32.word; --Parameter, übergeben aus task_sine
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity sine;
architecture rtl of sine is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
--own signals:
signal data_valid : std_logic;
signal busy : std_logic;
signal angle : signed(31 downto 0);
signal result_valid : std_logic;
signal sine_value : signed(31 downto 0);
signal output_value : signed(31 downto 0);
signal output_flag : std_logic;
--signal exp : signed(7 downto 0);
--signal tmp : signed(7 downto 0);
---State machine ----------------------------------
TYPE State_type IS (A, B, C, D); -- Define the states
SIGNAL State : State_Type; -- Create a signal that uses
-- the different states
begin
u_float_sine : entity work.float_sine
generic map (
ITERATIONS => 8
)
port map(
clk => clk,
reset => reset,
data_valid => data_valid,
angle => angle,
busy => busy,
result_valid => result_valid,
sine => sine_value
);
PROCESS (clk, reset)
BEGIN
If (reset = '1') THEN --RESET: State to A
data_valid <= '0';
output_flag <= '0';
angle <= x"00000000";--x"1FFFFFFF";
State <= A;
ELSIF rising_edge(clk) THEN -- if there is a rising edge of the
-- clock, then do the stuff below
-- The CASE statement checks the value of the State variable,
-- and based on the value and any other control signals, changes
-- to a new state.
CASE State IS
-- If the current state is A and P is set to 1, then the
-- next state is B
WHEN A => --set data_valid to 1 for one clock cycle
IF index = 0 THEN
angle <= signed(phase);
ELSE
--angle <= angle;--x"1FFFFFFF"; --debug: 1,5 --> should result in sin() = 1
END IF;
IF data_valid ='0' AND current_task_state = TASK_RUNNING THEN
data_valid <= '1';
State <= B;
END IF;
-- If the current state is B and P is set to 1, then the
-- next state is C
WHEN B =>
IF data_valid ='1' THEN
data_valid <= '0';
State <= C;
END IF;
-- If the current state is C and P is set to 1, then the
-- next state is D
WHEN C =>
IF result_valid = '1' AND busy = '0' THEN
--sine_value <= sine;
output_flag <= '1';
data_valid <= '0';
angle <= angle + signed(step_size); --winkel neu zuweisen
State <= D;
END IF;
-- If the current state is D and P is set to 1, then the
-- next state is B.
-- If the current state is D and P is set to 0, then the
-- next state is A.
WHEN D=>
IF data_valid = '0' THEN
output_flag <= '0';
State <= A;
--ELSE
--State <= A;
END IF;
--WHEN others =>
--State <= A;
END CASE;
END IF;
END PROCESS;
--end of state machine______________________________________
--do not change
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN ) then -- changed from index = work.task.STREAM_LEN - 1
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
--end of no not change
sync : process ( clk, reset , signal_writedata) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
--output:
IF output_flag = '1' THEN
index <= index + 1;
signal_write <= '1';
output_value <= sine_value;
output_value(30 downto 23) <= sine_value(30 downto 23) + (signed(amplitude(30 downto 23)) - 127); --change from +2 to correct exponent
--wenn 1: +0, wenn 2: +1, wenn 4:2, wenn 8: 3 = Bit
ELSE
signal_write <= '0';
END IF;
--signal_writedata <= std_logic_vector(to_unsigned(2, signal_writedata'length)); --test
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
signal_writedata <= std_logic_vector(output_value);--x"40800000";--( others => '0' );
end architecture rtl;