2024-12-04 09:37:28 +01:00

127 lines
3.7 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
entity rand is
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
seed : in work.reg32.word;
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity rand;
architecture rtl of rand is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
type CalcState is (
CALC_IDLE,
CALC_WRITE
);
signal Calc_State : CalcState;
signal lsfr : SIGNED( 31 downto 0 );
signal lsfr_std_logic : std_logic_vector( 31 downto 0 );
signal POLYNOM : std_logic_vector (31 downto 0);
signal lsfr_dump : SIGNED( 31 downto 0 );
begin
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sync : process ( clk, reset ) is
variable var_lsfr_logic : std_logic_vector( 31 downto 0);
variable var_lsfr_signed : SIGNED( 31 downto 0);
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
Calc_State <= CALC_IDLE;
lsfr <= SIGNED(seed);
lsfr_std_logic <= seed;
POLYNOM <= (others => '0');
POLYNOM(31) <= '1';
POLYNOM(21) <= '1';
POLYNOM(1) <= '1';
POLYNOM(0) <= '1';
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
lsfr <= SIGNED(seed);
signal_write <= '0';
when work.task.TASK_RUNNING =>
case Calc_State is
when CALC_IDLE =>
signal_write <= '0';
var_lsfr_logic := STD_LOGIC_VECTOR(lsfr);
if(var_lsfr_logic(0) = '1') then
var_lsfr_logic := '0' & (var_lsfr_logic(31 downto 1));
--var_lsfr_logic := (var_lsfr_logic(31:1);
var_lsfr_logic := (var_lsfr_logic XOR POLYNOM);
else
--var_lsfr_logic := (var_lsfr_logic srl 1);
var_lsfr_logic := '0' & var_lsfr_logic(31 downto 1);
end if;
var_lsfr_signed := SIGNED(var_lsfr_logic);
lsfr_dump <= SIGNED(var_lsfr_logic);
if(var_lsfr_signed(30) = '1') then
var_lsfr_signed := var_lsfr_signed(31 downto 31) & "1000000" & var_lsfr_signed(23 downto 0);
else
var_lsfr_signed := var_lsfr_signed(31 downto 31) & "011111" & var_lsfr_signed(24 downto 0);
end if;
lsfr <= var_lsfr_signed;
Calc_State <= CALC_WRITE;
when CALC_WRITE =>
signal_write <= '1';
index <= index + 1;
Calc_State <= CALC_IDLE;
end case;
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;
end if;
end process sync;
task_state <= current_task_state;
signal_writedata <= STD_LOGIC_VECTOR(lsfr);
end architecture rtl;