2025-01-08 08:50:24 +01:00

233 lines
6.6 KiB
VHDL

------------------------------------------------------------------------
-- fft
--
-- calculation of FFT magnitude
--
-- Inputs:
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
--
-- Outputs
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
--
-----------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.reg32.all;
use work.task.all;
use work.float.all;
entity fft is
generic (
-- input data width of real/img part
input_data_width : integer := 32;
-- output data width of real/img part
output_data_width : integer := 32
);
port (
clk : in std_logic;
reset : in std_logic;
task_start : in std_logic;
task_state : out work.task.State;
signal_read : out std_logic;
signal_readdata : in std_logic_vector( 31 downto 0 );
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity fft;
architecture rtl of fft is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
component fftmain is
-- generic( width : integer := 32
--);
port(
clock: in std_logic;
reset: in std_logic;
di_en: in std_logic;
di_re: in std_logic_vector(input_data_width-1 downto 0);
di_im: in std_logic_vector(input_data_width-1 downto 0);
do_en: out std_logic;
do_re: out std_logic_vector(output_data_width-1 downto 0);
do_im: out std_logic_vector(output_data_width-1 downto 0)
);
end component;
-- Zustände für die Zustandsmaschine zur Berechnung
type SigState is (
SIG_IDLE,
SIG_READ,
SIG_FFTMAIN,
SIG_FFTMAG,
SIG_WRITE
);
signal current_sig_state : SigState;
signal next_sig_state : SigState;
signal fftmain_start : std_logic;
signal fftmain_done : std_logic;
signal fftmag_start : std_logic;
signal fftmag_done : std_logic;
signal fftmain_out_re : std_logic_vector( 31 downto 0 );
signal fftmain_out_im : std_logic_vector( 31 downto 0 );
signal exp : std_logic_vector( 7 downto 0);
signal scaled_exp : std_logic_vector( 7 downto 0);
signal scaled_readdata : std_logic_vector( 31 downto 0);
signal exp_int : integer;
signal scaled_data_fixp : std_logic_vector(31 downto 0);
signal exp2 : std_logic_vector( 7 downto 0);
signal scaled_exp2 : std_logic_vector( 7 downto 0);
signal exp_int2 : integer;
signal magnitude_output : std_logic_vector( 31 downto 0 );
signal writedata_float : std_logic_vector( 31 downto 0 );
type std_logic_vector_array is array (0 to 1023) of std_logic_vector(31 downto 0);
signal my_array : std_logic_vector_array;
begin
exp <= signal_readdata( 30 downto 23 );
exp_int <= to_integer(unsigned(exp));
scaled_exp <= std_logic_vector(to_unsigned(exp_int - 4, 8));
scaled_readdata <= signal_readdata( 31 ) & scaled_exp & signal_readdata( 22 downto 0 );
scaled_data_fixp <= to_fixed(scaled_readdata);
writedata_float <= to_float(magnitude_output);
exp2 <= writedata_float( 30 downto 23 );
exp_int2 <= to_integer(unsigned(exp2));
scaled_exp2 <= std_logic_vector(to_unsigned(exp_int2 + 5, 8));
my_array(1023 - index) <= writedata_float( 31 ) & scaled_exp2 & writedata_float( 22 downto 0 );
signal_writedata <= my_array(index);
u_fft : fftmain
port map (
clock => clk,
reset => reset,
di_en => fftmain_start,
di_re => scaled_data_fixp,
di_im => x"00000000",
do_en => fftmain_done,
do_re => fftmain_out_re,
do_im => fftmain_out_im
);
u_fft_mag_calc : entity work.fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => fftmag_start,
input_re => fftmain_out_re,
input_im => fftmain_out_im,
output_valid => fftmag_done,
output_magnitude => magnitude_output
);
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;
sig_state_transitions : process (all) is
begin
next_sig_state <= current_sig_state;
case current_sig_state is
when SIG_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
next_sig_state <= SIG_READ;
end if;
when SIG_READ =>
next_sig_state <= SIG_FFTMAIN;
when SIG_FFTMAIN =>
if ( fftmain_done = '1') then
next_sig_state <= SIG_FFTMAG;
end if;
when SIG_FFTMAG =>
if ( fftmain_done = '0') then
next_sig_state <= SIG_WRITE;
end if;
when SIG_WRITE =>
null;
end case;
end process sig_state_transitions;
sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
current_sig_state <= SIG_IDLE;
index <= 0;
signal_read <= '0';
fftmain_start <= '0';
fftmag_start <= '0';
signal_write <= '0';
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
null;
when work.task.TASK_RUNNING =>
null;
when work.task.TASK_DONE =>
null;
end case;
current_sig_state <= next_sig_state;
case next_sig_state is
when SIG_IDLE =>
signal_write <= '0';
when SIG_READ =>
signal_read <= '1';
when SIG_FFTMAIN =>
fftmain_start <= '1';
when SIG_FFTMAG =>
signal_read <= '0';
fftmain_start <= '0';
fftmag_start <= '1';
signal_write <= '0';
index <= index + 1;
when SIG_WRITE =>
fftmag_start <= '0';
signal_write <= '1';
end case;
end if;
end process sync;
task_state <= current_task_state;
end architecture rtl;