Browse Source

Adds U4 FSM

master
kutningjo 2 weeks ago
parent
commit
6a3c593444
6 changed files with 369 additions and 4 deletions
  1. 5
    4
      U4_FSM/Makefile
  2. BIN
      U4_FSM/Zustandsmaschine.pdf
  3. 153
    0
      U4_FSM/fft_magnitude_calc.vhd
  4. 119
    0
      U4_FSM/squareRoot_pipe.vhd
  5. 89
    0
      U4_FSM/test_fsm.vhd
  6. 3
    0
      U4_FSM/vsim.wave

+ 5
- 4
U4_FSM/Makefile View File



vhdl_srcs = down_counter_int.vhd \
top_entity.vhd \
test_top_entity.vhd \
vhdl_srcs = ../scripts/test_utility.vhd \
squareRoot_pipe.vhd \
fft_magnitude_calc.vhd \
test_fsm.vhd \


main = test_top_entity
main = tb_fft_magnitude_calc


CHECK_RESULTS = true CHECK_RESULTS = true



BIN
U4_FSM/Zustandsmaschine.pdf View File


+ 153
- 0
U4_FSM/fft_magnitude_calc.vhd View File

------------------------------------------------------------------------
-- fft_magnitude_calc
--
-- calculation of FFT magnitude sqrt(real_part²+im_part²)
-- Inputs:
-- input_re in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K)
-- input_im in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K)
-- input_valid: high = inputs are valid for data processing
-- Outputs
-- output_magnitude: Fixpoint 0.5=0x40000000 (always positive)
-- output_valid: high = magnitude data is valid
-----------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity fft_magnitude_calc is
port (
clk : in std_logic; -- Takt
reset : in std_logic; -- Reset
input_valid: in std_logic; -- Eingangsdaten gueltig
input_re : in std_logic_vector( 31 downto 0 ); -- Realteil in Fixpoint
input_im : in std_logic_vector( 31 downto 0 ); -- Imaginaerteil in Fixpoint
output_valid : out std_logic; -- Ausgangsdaten gueltig
output_magnitude : out std_logic_vector( 31 downto 0 ) -- Berechnete magnitude
);
end entity fft_magnitude_calc;
architecture rtl of fft_magnitude_calc is
-- Zustaende fuer die Zustandsmaschine fuer die Berechnung
type CalcState is (
CALC_IDLE, -- Zustand Leerlauf
CALC_MULTIPLY, -- Zustand Berechnung real_part² und im_part²
CALC_ADD, -- Zustand Berecnung Addition real_part²+im_part²
CALC_SQRT, -- Zustand Berechnung der sqrt(real_part²+im_part²)
CALC_STORE_RESULT -- Zustand Setzen von output_valid und output_magnitude
);
-- Legen Sie die Signale current_calc_state und next_calc_state fuer die Zustandsmaschine CalcState an
-- Legen Sie die Signale re_multiply_re und im_multiply_im als signed (63 downto 0) an
-- Legen Sie die Signal re2_add_im2 als signed (63 downto 0) an
-- Legen Sie die Signal output_sqrt als std_logic_vector (31 downto 0) an
-- Legen Sie die Signal output_sqrt als std_logic_vector (15 downto 0) an
-- Legen Sie das Signal start_sqrt_calc als std_logic an
-- Legen Sie das Signal sqrt_out_valid_flag als std_logic an
begin
-- uebergangsschaltnetz der Zustandsmaschine fuer die Berechnung (Strukturvariante 2 Process Zustandsmaschine)
-- Beschreiben Sie den Prozess fuer das uebergangsschaltnetz (Case-Anweisung)
-- CALC_IDLE -> CALC_MULTIPLY wenn input_valid = 1
-- CALC_MULTIPLY -> CALC_ADD
-- CALC_ADD -> CALC_SQRT
-- CALC_SQRT -> CALC_STORE_RESULT wenn sqrt_out_valid_flag = 1
-- CALC_STORE_RESULT -> CALC_IDLE
calc_state_transitions : process ( all ) is
begin
end process calc_state_transitions;
-- Zustandsspeicher und Ausgangsschaltnetz zu der Steuerung der Berechnung (Strukturvariante 2 Process Zustandsmaschine)
sync : process ( clk, reset ) is
begin
-- Der Prozess steuert folgende Signale setzen Sie fuer alle passende Resetwerte
-- current_calc_state
-- re_multiply_re
-- im_multiply_im
-- re2_add_im2
-- input_sqrt
-- start_sqrt_calc
-- output_valid
-- output_magnitude
if ( reset = '1' ) then
elsif ( rising_edge( clk ) ) then
-- Machen Sie Anweisungen um start_sqrt_calc und output_valid auf 0 zu setzen
-- Realisieren Sie den Zustandsspeicher current_calc_state
-- Vervollstaendigen Sie das Ausgangsschaltnetz
case next_calc_state is
when CALC_IDLE=> null;
-- calculation of real_part² and im_part²
-- Anweisung fuer die Berechnung von re_multiply_re = input_re² (Datentypen beachten)
-- Anweisung fuer die Berechnung von im_multiply_im = input_im² (Datentypen beachten)
when CALC_MULTIPLY =>
-- calculation of real_part²*+im_part²
-- Anweisung fuer die Berechnung von re2_add_im2 = re_multiply_re + im_multiply_im
when CALC_ADD =>
-- calculation of sqrt(real_part²+im_part²)
-- Anweisung um input_sqrt mit den obersten 32-Bit von re2_add_im2 zu belegen (Datentypen beachten)
-- Anweisung um start_sqrt_calc mit 1 zu setzen
when CALC_SQRT =>
-- Setzen der Entity-Ausgaenge
-- Anweisung um die obersten 16 bit von output_magnitude mit output_sqrt zu setzen und die untern 16 Bit mit 0
-- Anweisung um output_valid mit 1 zu setzen
when CALC_STORE_RESULT =>
when others => NUll;
end case;
end if;
end process sync;
-- Instanziierung des SQRT Moduls fuer die Berechnung der Quardratwurzel
-- Weisen Sie die Signale output_sqrt, reset, input_sqrt und clk richtig zu
sqrt_module : entity work.squareRoot_pipe
generic map (
G_DATA_W => 32
)
port map (
clk => ,
rst => ,
iv_data => ,
ov_res =>
);
-- Dieser Prozess sorgt dafuer, dass 16 Takte nachdem start_sqrt_calc 1 geworden ist sqrt_out_valid_flag zu 1 wird
-- Wird benoetigt um die Berechnungsdauer des sqrt_module anzueigen
-- Hier muss nichts veraendert werden
p_sqrt_out_valid_flag: process ( clk, reset ) is
variable delay_sqrt_out_valid_flag : std_logic_vector(14 downto 0);
begin
if ( reset = '1' ) then
sqrt_out_valid_flag <= '0';
delay_sqrt_out_valid_flag := (others => '0');
elsif ( rising_edge( clk ) ) then
sqrt_out_valid_flag <= delay_sqrt_out_valid_flag(14);
delay_sqrt_out_valid_flag := delay_sqrt_out_valid_flag(13 downto 0) & start_sqrt_calc;
if sqrt_out_valid_flag = '1' then
delay_sqrt_out_valid_flag := (others => '0');
end if;
end if;
end process p_sqrt_out_valid_flag;
end architecture rtl;

+ 119
- 0
U4_FSM/squareRoot_pipe.vhd View File

----------------------------------------------------------------------------------------------------
-- Component : squareRoot_pipe
-- Author : pwkolas
----------------------------------------------------------------------------------------------------
-- File : squareRoot_pipe.vhd
-- Mod. Date : XX.XX.XXXX
-- Version : 1.00
----------------------------------------------------------------------------------------------------
-- Description : Square root calculator.
-- Based on
-- "A New Non-Restoring Square Root Algorithm and Its VLSI Implementations"
--
----------------------------------------------------------------------------------------------------
-- Modification History :
--
----------------------------------------------------------------------------------------------------
-- Comments :
--
----------------------------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity squareRoot_pipe is
generic (
G_DATA_W : integer := 32
);
port (
clk : in std_logic;
rst : in std_logic;
iv_data : in std_logic_vector(G_DATA_W-1 downto 0);
ov_res : out std_logic_vector((G_DATA_W/2)-1 downto 0)
);
end entity squareRoot_pipe;
architecture squareRoot_pipe_rtl of squareRoot_pipe is
constant C_ALU_W : integer := ((G_DATA_W/2) + 2);
constant C_PIPE_L : integer := G_DATA_W/2;
constant C_OFFSET : integer := 3; -- width of start vectors going to ALU
type t_arr_pipe_x_data is array (C_PIPE_L-1 downto 0) of unsigned(G_DATA_W-1 downto 0);
signal a_data : t_arr_pipe_x_data; -- (D)
signal a_R : t_arr_pipe_x_data; -- (R)
type t_arr_pipe_x_alu is array (C_PIPE_L-1 downto 0) of unsigned(C_ALU_W-1 downto 0);
type t_arr_pipe_x_res is array (C_PIPE_L-1 downto 0) of unsigned(G_DATA_W/2-1 downto 0);
signal a_Q : t_arr_pipe_x_res; -- (ALU Q out)
signal nextOp : std_logic_vector(C_PIPE_L-1 downto 0);
begin
sqrt_p : process (clk, rst)
variable va_AluInR : t_arr_pipe_x_alu; -- (ALU R in)
variable va_AluInQ : t_arr_pipe_x_alu; -- (ALU Q in)
variable va_AluOut : t_arr_pipe_x_alu; -- (ALU Q out)
begin
if (rst = '1') then
a_data <= (others => (others => '0'));
a_R <= (others => (others => '0'));
a_Q <= (others => (others => '0'));
va_AluInR := (others => (others => '0'));
va_AluInQ := (others => (others => '0'));
va_AluOut := (others => (others => '0'));
nextOp <= (others => '0');
elsif rising_edge(clk) then
-- stage 0 start conditions, ALU inputs
va_AluInR(0) := (others => '0');
va_AluInR(0)(1 downto 0) := unsigned(iv_data(G_DATA_W-1 downto G_DATA_W-1-1));
va_AluInQ(0) := (others => '0');
va_AluInQ(0)(0) := '1';
-- stage 0 calculations
va_AluOut(0) := va_AluInR(0) - va_AluInQ(0);
-- stage 0 result registers, ALU output
a_data(0) <= shift_left(unsigned(iv_data), 2);
a_R(0) <= (others => '0');
a_R(0)(G_DATA_W-1 downto G_DATA_W-1-1) <= va_AluOut(0)(1 downto 0);
a_Q(0) <= (others => '0');
a_Q(0)(0) <= not va_AluOut(0)(2);
nextOp(0) <= not va_AluOut(0)(2);
-- next stages
for i in 1 to C_PIPE_L-1 loop
-- prepare inputs for next stage
va_AluInR(i) := (others => '0');
va_AluInR(i)(C_OFFSET+i-1 downto 2) := a_R(i-1)(G_DATA_W-(i-1)-1 downto G_DATA_W-(2*i));
va_AluInR(i)(2-1 downto 0) := a_data(i-1)(G_DATA_W-1 downto G_DATA_W-1-1);
va_AluInQ(i) := (others => '0');
va_AluInQ(i)(C_OFFSET+(i-1)-1 downto 2) := a_Q(i-1)(i-1 downto 0);
va_AluInQ(i)(1) := not a_Q(i-1)(0);
va_AluInQ(i)(0) := '1';
-- ALU ADD/SUB
if (nextOp(i-1) = '1') then
va_AluOut(i) := va_AluInR(i) - va_AluInQ(i);
else
va_AluOut(i) := va_AluInR(i) + va_AluInQ(i);
end if;
-- result registers
a_data(i) <= shift_left(unsigned(a_data(i-1)), 2);
a_R(i) <= (others => '0');
a_R(i)(G_DATA_W-i-1 downto G_DATA_W-2*(i+1)) <= va_AluOut(i)(i+1 downto 0);
a_Q(i) <= shift_left(unsigned(a_Q(i-1)), 1);
a_Q(i)(0) <= not va_AluOut(i)(i+2);
nextOp(i) <= not va_AluOut(i)(i+2);
end loop;
end if;
end process;
ov_res <= std_logic_vector(a_Q(C_PIPE_L-1));
end architecture squareRoot_pipe_rtl;

+ 89
- 0
U4_FSM/test_fsm.vhd View File

------------------------------------------------------------------------
-- fft_magnitude_calc
--
-- calculation of FFT magnitude sqrt(real_part²+im_part²)
-- Inputs:
-- input_re in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K)
-- input_im in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K)
-- input_valid: high = inputs are valid for data processing
-- Outputs
-- output_magnitude: Fixpoint 0.5=0x40000000 (always positive)
-- output_valid: high = magnitude data is valid
-----------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity tb_fft_magnitude_calc is
generic( GUI_MODE : boolean; CHECK_RESULTS : boolean );
end entity tb_fft_magnitude_calc;
architecture rtl of tb_fft_magnitude_calc is
signal clk : std_logic := '0'; -- Takt
signal reset : std_logic := '1'; -- Reset
signal input_valid: std_logic := '0'; -- Eingangsdaten gültig
signal input_re : std_logic_vector( 31 downto 0 ) := X"40000000"; -- Realteil in Fixpoint
signal input_im : std_logic_vector( 31 downto 0 ):= X"40000000"; -- Imaginärteil in Fixpoint
signal output_valid : std_logic; -- Ausgangsdaten gültig
signal output_magnitude : std_logic_vector( 31 downto 0 );
begin
clk <= not clk after 10 ns;
reset_release : process is
begin
wait for 435 ns;
reset <= '0';
wait;
end process reset_release;
-- Instanziierung des SQRT Moduls für die Berechnung der Quardratwurzel
-- Weisen Sie die Signale output_sqrt, reset, input_sqrt und clk richtig zu
fft_magnitude_calc_module : entity work.fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => input_valid, -- Eingangsdaten gültig
input_re => input_re, -- Realteil in Fixpoint
input_im => input_im, -- Imaginärteil in Fixpoint
output_valid => output_valid, -- Ausgangsdaten gültig
output_magnitude => output_magnitude -- Berechnete magnitude
);
stimulus: process is
begin
wait until falling_edge( reset );
wait until falling_edge( clk );
input_valid <= '1';
wait until falling_edge( clk );
input_valid <= '0';
wait until falling_edge( output_valid );
wait for 200 ns;
wait until falling_edge( clk );
input_valid <= '1';
input_re <= X"20000000";
input_im <= X"20000000";
wait until falling_edge( clk );
input_valid <= '0';
wait until falling_edge( output_valid );
wait until falling_edge( clk );
if ( GUI_MODE ) then
std.env.stop;
else
std.env.finish;
end if;
end process stimulus;
end architecture rtl;

+ 3
- 0
U4_FSM/vsim.wave View File

onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate /tb_fft_magnitude_calc/fft_magnitude_calc_module/*

Loading…
Cancel
Save