vhdl_srcs = down_counter_int.vhd \ | |||||
top_entity.vhd \ | |||||
test_top_entity.vhd \ | |||||
vhdl_srcs = ../scripts/test_utility.vhd \ | |||||
squareRoot_pipe.vhd \ | |||||
fft_magnitude_calc.vhd \ | |||||
test_fsm.vhd \ | |||||
main = test_top_entity | |||||
main = tb_fft_magnitude_calc | |||||
CHECK_RESULTS = true | CHECK_RESULTS = true | ||||
------------------------------------------------------------------------ | |||||
-- fft_magnitude_calc | |||||
-- | |||||
-- calculation of FFT magnitude sqrt(real_part²+im_part²) | |||||
-- Inputs: | |||||
-- input_re in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K) | |||||
-- input_im in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K) | |||||
-- input_valid: high = inputs are valid for data processing | |||||
-- Outputs | |||||
-- output_magnitude: Fixpoint 0.5=0x40000000 (always positive) | |||||
-- output_valid: high = magnitude data is valid | |||||
----------------------------------------------------------------------- | |||||
library ieee; | |||||
use ieee.std_logic_1164.all; | |||||
use ieee.numeric_std.all; | |||||
entity fft_magnitude_calc is | |||||
port ( | |||||
clk : in std_logic; -- Takt | |||||
reset : in std_logic; -- Reset | |||||
input_valid: in std_logic; -- Eingangsdaten gueltig | |||||
input_re : in std_logic_vector( 31 downto 0 ); -- Realteil in Fixpoint | |||||
input_im : in std_logic_vector( 31 downto 0 ); -- Imaginaerteil in Fixpoint | |||||
output_valid : out std_logic; -- Ausgangsdaten gueltig | |||||
output_magnitude : out std_logic_vector( 31 downto 0 ) -- Berechnete magnitude | |||||
); | |||||
end entity fft_magnitude_calc; | |||||
architecture rtl of fft_magnitude_calc is | |||||
-- Zustaende fuer die Zustandsmaschine fuer die Berechnung | |||||
type CalcState is ( | |||||
CALC_IDLE, -- Zustand Leerlauf | |||||
CALC_MULTIPLY, -- Zustand Berechnung real_part² und im_part² | |||||
CALC_ADD, -- Zustand Berecnung Addition real_part²+im_part² | |||||
CALC_SQRT, -- Zustand Berechnung der sqrt(real_part²+im_part²) | |||||
CALC_STORE_RESULT -- Zustand Setzen von output_valid und output_magnitude | |||||
); | |||||
-- Legen Sie die Signale current_calc_state und next_calc_state fuer die Zustandsmaschine CalcState an | |||||
-- Legen Sie die Signale re_multiply_re und im_multiply_im als signed (63 downto 0) an | |||||
-- Legen Sie die Signal re2_add_im2 als signed (63 downto 0) an | |||||
-- Legen Sie die Signal output_sqrt als std_logic_vector (31 downto 0) an | |||||
-- Legen Sie die Signal output_sqrt als std_logic_vector (15 downto 0) an | |||||
-- Legen Sie das Signal start_sqrt_calc als std_logic an | |||||
-- Legen Sie das Signal sqrt_out_valid_flag als std_logic an | |||||
begin | |||||
-- uebergangsschaltnetz der Zustandsmaschine fuer die Berechnung (Strukturvariante 2 Process Zustandsmaschine) | |||||
-- Beschreiben Sie den Prozess fuer das uebergangsschaltnetz (Case-Anweisung) | |||||
-- CALC_IDLE -> CALC_MULTIPLY wenn input_valid = 1 | |||||
-- CALC_MULTIPLY -> CALC_ADD | |||||
-- CALC_ADD -> CALC_SQRT | |||||
-- CALC_SQRT -> CALC_STORE_RESULT wenn sqrt_out_valid_flag = 1 | |||||
-- CALC_STORE_RESULT -> CALC_IDLE | |||||
calc_state_transitions : process ( all ) is | |||||
begin | |||||
end process calc_state_transitions; | |||||
-- Zustandsspeicher und Ausgangsschaltnetz zu der Steuerung der Berechnung (Strukturvariante 2 Process Zustandsmaschine) | |||||
sync : process ( clk, reset ) is | |||||
begin | |||||
-- Der Prozess steuert folgende Signale setzen Sie fuer alle passende Resetwerte | |||||
-- current_calc_state | |||||
-- re_multiply_re | |||||
-- im_multiply_im | |||||
-- re2_add_im2 | |||||
-- input_sqrt | |||||
-- start_sqrt_calc | |||||
-- output_valid | |||||
-- output_magnitude | |||||
if ( reset = '1' ) then | |||||
elsif ( rising_edge( clk ) ) then | |||||
-- Machen Sie Anweisungen um start_sqrt_calc und output_valid auf 0 zu setzen | |||||
-- Realisieren Sie den Zustandsspeicher current_calc_state | |||||
-- Vervollstaendigen Sie das Ausgangsschaltnetz | |||||
case next_calc_state is | |||||
when CALC_IDLE=> null; | |||||
-- calculation of real_part² and im_part² | |||||
-- Anweisung fuer die Berechnung von re_multiply_re = input_re² (Datentypen beachten) | |||||
-- Anweisung fuer die Berechnung von im_multiply_im = input_im² (Datentypen beachten) | |||||
when CALC_MULTIPLY => | |||||
-- calculation of real_part²*+im_part² | |||||
-- Anweisung fuer die Berechnung von re2_add_im2 = re_multiply_re + im_multiply_im | |||||
when CALC_ADD => | |||||
-- calculation of sqrt(real_part²+im_part²) | |||||
-- Anweisung um input_sqrt mit den obersten 32-Bit von re2_add_im2 zu belegen (Datentypen beachten) | |||||
-- Anweisung um start_sqrt_calc mit 1 zu setzen | |||||
when CALC_SQRT => | |||||
-- Setzen der Entity-Ausgaenge | |||||
-- Anweisung um die obersten 16 bit von output_magnitude mit output_sqrt zu setzen und die untern 16 Bit mit 0 | |||||
-- Anweisung um output_valid mit 1 zu setzen | |||||
when CALC_STORE_RESULT => | |||||
when others => NUll; | |||||
end case; | |||||
end if; | |||||
end process sync; | |||||
-- Instanziierung des SQRT Moduls fuer die Berechnung der Quardratwurzel | |||||
-- Weisen Sie die Signale output_sqrt, reset, input_sqrt und clk richtig zu | |||||
sqrt_module : entity work.squareRoot_pipe | |||||
generic map ( | |||||
G_DATA_W => 32 | |||||
) | |||||
port map ( | |||||
clk => , | |||||
rst => , | |||||
iv_data => , | |||||
ov_res => | |||||
); | |||||
-- Dieser Prozess sorgt dafuer, dass 16 Takte nachdem start_sqrt_calc 1 geworden ist sqrt_out_valid_flag zu 1 wird | |||||
-- Wird benoetigt um die Berechnungsdauer des sqrt_module anzueigen | |||||
-- Hier muss nichts veraendert werden | |||||
p_sqrt_out_valid_flag: process ( clk, reset ) is | |||||
variable delay_sqrt_out_valid_flag : std_logic_vector(14 downto 0); | |||||
begin | |||||
if ( reset = '1' ) then | |||||
sqrt_out_valid_flag <= '0'; | |||||
delay_sqrt_out_valid_flag := (others => '0'); | |||||
elsif ( rising_edge( clk ) ) then | |||||
sqrt_out_valid_flag <= delay_sqrt_out_valid_flag(14); | |||||
delay_sqrt_out_valid_flag := delay_sqrt_out_valid_flag(13 downto 0) & start_sqrt_calc; | |||||
if sqrt_out_valid_flag = '1' then | |||||
delay_sqrt_out_valid_flag := (others => '0'); | |||||
end if; | |||||
end if; | |||||
end process p_sqrt_out_valid_flag; | |||||
end architecture rtl; | |||||
---------------------------------------------------------------------------------------------------- | |||||
-- Component : squareRoot_pipe | |||||
-- Author : pwkolas | |||||
---------------------------------------------------------------------------------------------------- | |||||
-- File : squareRoot_pipe.vhd | |||||
-- Mod. Date : XX.XX.XXXX | |||||
-- Version : 1.00 | |||||
---------------------------------------------------------------------------------------------------- | |||||
-- Description : Square root calculator. | |||||
-- Based on | |||||
-- "A New Non-Restoring Square Root Algorithm and Its VLSI Implementations" | |||||
-- | |||||
---------------------------------------------------------------------------------------------------- | |||||
-- Modification History : | |||||
-- | |||||
---------------------------------------------------------------------------------------------------- | |||||
-- Comments : | |||||
-- | |||||
---------------------------------------------------------------------------------------------------- | |||||
library ieee; | |||||
use ieee.std_logic_1164.all; | |||||
use ieee.numeric_std.all; | |||||
entity squareRoot_pipe is | |||||
generic ( | |||||
G_DATA_W : integer := 32 | |||||
); | |||||
port ( | |||||
clk : in std_logic; | |||||
rst : in std_logic; | |||||
iv_data : in std_logic_vector(G_DATA_W-1 downto 0); | |||||
ov_res : out std_logic_vector((G_DATA_W/2)-1 downto 0) | |||||
); | |||||
end entity squareRoot_pipe; | |||||
architecture squareRoot_pipe_rtl of squareRoot_pipe is | |||||
constant C_ALU_W : integer := ((G_DATA_W/2) + 2); | |||||
constant C_PIPE_L : integer := G_DATA_W/2; | |||||
constant C_OFFSET : integer := 3; -- width of start vectors going to ALU | |||||
type t_arr_pipe_x_data is array (C_PIPE_L-1 downto 0) of unsigned(G_DATA_W-1 downto 0); | |||||
signal a_data : t_arr_pipe_x_data; -- (D) | |||||
signal a_R : t_arr_pipe_x_data; -- (R) | |||||
type t_arr_pipe_x_alu is array (C_PIPE_L-1 downto 0) of unsigned(C_ALU_W-1 downto 0); | |||||
type t_arr_pipe_x_res is array (C_PIPE_L-1 downto 0) of unsigned(G_DATA_W/2-1 downto 0); | |||||
signal a_Q : t_arr_pipe_x_res; -- (ALU Q out) | |||||
signal nextOp : std_logic_vector(C_PIPE_L-1 downto 0); | |||||
begin | |||||
sqrt_p : process (clk, rst) | |||||
variable va_AluInR : t_arr_pipe_x_alu; -- (ALU R in) | |||||
variable va_AluInQ : t_arr_pipe_x_alu; -- (ALU Q in) | |||||
variable va_AluOut : t_arr_pipe_x_alu; -- (ALU Q out) | |||||
begin | |||||
if (rst = '1') then | |||||
a_data <= (others => (others => '0')); | |||||
a_R <= (others => (others => '0')); | |||||
a_Q <= (others => (others => '0')); | |||||
va_AluInR := (others => (others => '0')); | |||||
va_AluInQ := (others => (others => '0')); | |||||
va_AluOut := (others => (others => '0')); | |||||
nextOp <= (others => '0'); | |||||
elsif rising_edge(clk) then | |||||
-- stage 0 start conditions, ALU inputs | |||||
va_AluInR(0) := (others => '0'); | |||||
va_AluInR(0)(1 downto 0) := unsigned(iv_data(G_DATA_W-1 downto G_DATA_W-1-1)); | |||||
va_AluInQ(0) := (others => '0'); | |||||
va_AluInQ(0)(0) := '1'; | |||||
-- stage 0 calculations | |||||
va_AluOut(0) := va_AluInR(0) - va_AluInQ(0); | |||||
-- stage 0 result registers, ALU output | |||||
a_data(0) <= shift_left(unsigned(iv_data), 2); | |||||
a_R(0) <= (others => '0'); | |||||
a_R(0)(G_DATA_W-1 downto G_DATA_W-1-1) <= va_AluOut(0)(1 downto 0); | |||||
a_Q(0) <= (others => '0'); | |||||
a_Q(0)(0) <= not va_AluOut(0)(2); | |||||
nextOp(0) <= not va_AluOut(0)(2); | |||||
-- next stages | |||||
for i in 1 to C_PIPE_L-1 loop | |||||
-- prepare inputs for next stage | |||||
va_AluInR(i) := (others => '0'); | |||||
va_AluInR(i)(C_OFFSET+i-1 downto 2) := a_R(i-1)(G_DATA_W-(i-1)-1 downto G_DATA_W-(2*i)); | |||||
va_AluInR(i)(2-1 downto 0) := a_data(i-1)(G_DATA_W-1 downto G_DATA_W-1-1); | |||||
va_AluInQ(i) := (others => '0'); | |||||
va_AluInQ(i)(C_OFFSET+(i-1)-1 downto 2) := a_Q(i-1)(i-1 downto 0); | |||||
va_AluInQ(i)(1) := not a_Q(i-1)(0); | |||||
va_AluInQ(i)(0) := '1'; | |||||
-- ALU ADD/SUB | |||||
if (nextOp(i-1) = '1') then | |||||
va_AluOut(i) := va_AluInR(i) - va_AluInQ(i); | |||||
else | |||||
va_AluOut(i) := va_AluInR(i) + va_AluInQ(i); | |||||
end if; | |||||
-- result registers | |||||
a_data(i) <= shift_left(unsigned(a_data(i-1)), 2); | |||||
a_R(i) <= (others => '0'); | |||||
a_R(i)(G_DATA_W-i-1 downto G_DATA_W-2*(i+1)) <= va_AluOut(i)(i+1 downto 0); | |||||
a_Q(i) <= shift_left(unsigned(a_Q(i-1)), 1); | |||||
a_Q(i)(0) <= not va_AluOut(i)(i+2); | |||||
nextOp(i) <= not va_AluOut(i)(i+2); | |||||
end loop; | |||||
end if; | |||||
end process; | |||||
ov_res <= std_logic_vector(a_Q(C_PIPE_L-1)); | |||||
end architecture squareRoot_pipe_rtl; |
------------------------------------------------------------------------ | |||||
-- fft_magnitude_calc | |||||
-- | |||||
-- calculation of FFT magnitude sqrt(real_part²+im_part²) | |||||
-- Inputs: | |||||
-- input_re in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K) | |||||
-- input_im in: +-1 signed Fixpoint (0.5=0x40000000, -0.5=0xC0000000 (negative numbers in 2K) | |||||
-- input_valid: high = inputs are valid for data processing | |||||
-- Outputs | |||||
-- output_magnitude: Fixpoint 0.5=0x40000000 (always positive) | |||||
-- output_valid: high = magnitude data is valid | |||||
----------------------------------------------------------------------- | |||||
library ieee; | |||||
use ieee.std_logic_1164.all; | |||||
use ieee.numeric_std.all; | |||||
entity tb_fft_magnitude_calc is | |||||
generic( GUI_MODE : boolean; CHECK_RESULTS : boolean ); | |||||
end entity tb_fft_magnitude_calc; | |||||
architecture rtl of tb_fft_magnitude_calc is | |||||
signal clk : std_logic := '0'; -- Takt | |||||
signal reset : std_logic := '1'; -- Reset | |||||
signal input_valid: std_logic := '0'; -- Eingangsdaten gültig | |||||
signal input_re : std_logic_vector( 31 downto 0 ) := X"40000000"; -- Realteil in Fixpoint | |||||
signal input_im : std_logic_vector( 31 downto 0 ):= X"40000000"; -- Imaginärteil in Fixpoint | |||||
signal output_valid : std_logic; -- Ausgangsdaten gültig | |||||
signal output_magnitude : std_logic_vector( 31 downto 0 ); | |||||
begin | |||||
clk <= not clk after 10 ns; | |||||
reset_release : process is | |||||
begin | |||||
wait for 435 ns; | |||||
reset <= '0'; | |||||
wait; | |||||
end process reset_release; | |||||
-- Instanziierung des SQRT Moduls für die Berechnung der Quardratwurzel | |||||
-- Weisen Sie die Signale output_sqrt, reset, input_sqrt und clk richtig zu | |||||
fft_magnitude_calc_module : entity work.fft_magnitude_calc | |||||
port map ( | |||||
clk => clk, | |||||
reset => reset, | |||||
input_valid => input_valid, -- Eingangsdaten gültig | |||||
input_re => input_re, -- Realteil in Fixpoint | |||||
input_im => input_im, -- Imaginärteil in Fixpoint | |||||
output_valid => output_valid, -- Ausgangsdaten gültig | |||||
output_magnitude => output_magnitude -- Berechnete magnitude | |||||
); | |||||
stimulus: process is | |||||
begin | |||||
wait until falling_edge( reset ); | |||||
wait until falling_edge( clk ); | |||||
input_valid <= '1'; | |||||
wait until falling_edge( clk ); | |||||
input_valid <= '0'; | |||||
wait until falling_edge( output_valid ); | |||||
wait for 200 ns; | |||||
wait until falling_edge( clk ); | |||||
input_valid <= '1'; | |||||
input_re <= X"20000000"; | |||||
input_im <= X"20000000"; | |||||
wait until falling_edge( clk ); | |||||
input_valid <= '0'; | |||||
wait until falling_edge( output_valid ); | |||||
wait until falling_edge( clk ); | |||||
if ( GUI_MODE ) then | |||||
std.env.stop; | |||||
else | |||||
std.env.finish; | |||||
end if; | |||||
end process stimulus; | |||||
end architecture rtl; |
onerror {resume} | |||||
quietly WaveActivateNextPane {} 0 | |||||
add wave -noupdate /tb_fft_magnitude_calc/fft_magnitude_calc_module/* |