From 08881f47cf4bc632bf204072b9bd5044d94d2c77 Mon Sep 17 00:00:00 2001 From: Max Sponsel Date: Thu, 10 Sep 2020 11:34:04 +0200 Subject: [PATCH] Vereinfachung des Codes mit cv2.cvtColor Statt das Array doppelt mit der flipud Funktion zu spiegeln, wird es direkt im Einleseprozess von BGR(OpenCV) zu RGB(Pillow und Algorithmus) konvertiert. --- Code/Dyschromasie-Applikation.py | 18 ++++++++---------- 1 file changed, 8 insertions(+), 10 deletions(-) diff --git a/Code/Dyschromasie-Applikation.py b/Code/Dyschromasie-Applikation.py index 7ab597d..e1c7b98 100644 --- a/Code/Dyschromasie-Applikation.py +++ b/Code/Dyschromasie-Applikation.py @@ -49,6 +49,7 @@ class Protanopie(Dyschromasie): # Gammakorrektur durchfuehren self.cb_image = np.copy(self.img_mat).astype('float64') + for i in range(self.rows): for j in range(self.cols): for x in range(3): @@ -57,12 +58,10 @@ class Protanopie(Dyschromasie): # Einzelne Pixelwertberechnung for i in range(self.rows): for j in range(self.cols): - self.cb_image[i, j] = np.flipud( - self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j]))) + self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j]) self.sim_image = np.copy(self.cb_image) self.sim_image = self.sim_image.astype('uint8') - # Rücktransformation der Gammawerte for i in range(self.rows): for j in range(self.cols): @@ -89,8 +88,7 @@ class Deuteranopie(Dyschromasie): # Einzelne Pixelwertberechnung for i in range(self.rows): for j in range(self.cols): - self.cb_image[i, j] = np.flipud( - self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j]))) + self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j]) self.sim_image = np.copy(self.cb_image) self.sim_image = self.sim_image.astype('uint8') @@ -121,8 +119,7 @@ class Tritanopie(Dyschromasie): # Einzelne Pixelwertberechnung for i in range(self.rows): for j in range(self.cols): - self.cb_image[i, j] = np.flipud( - self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j]))) + self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j]) self.sim_image = np.copy(self.cb_image) self.sim_image = self.sim_image.astype('uint8') @@ -229,6 +226,7 @@ def browse(): # Einspeichern der Path-Informationen global img, rows, cols, kanaele img = cv2.imread(path) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) rows, cols, kanaele = img.shape @@ -236,7 +234,7 @@ def simulate(): global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri if sim_deut.get(): d = Deuteranopie(img, rows, cols, kanaele, simGrad.get()/100) - display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB) + display_array_deut = d.Simulate() T = tk.Text(SB.frame, height=1, width=15) T.grid(columnspan=5) @@ -249,7 +247,7 @@ def simulate(): sim_pic_deut.grid(columnspan=5) elif sim_tri.get(): t = Tritanopie(img, rows, cols, kanaele, simGrad.get()/100) - display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB) + display_array_tri = t.Simulate() T = tk.Text(SB.frame, height=1, width=15) T.grid(columnspan=5) @@ -262,7 +260,7 @@ def simulate(): sim_pic_tri.grid(columnspan=5) elif sim_pro.get(): p = Protanopie(img, rows, cols, kanaele, simGrad.get()/100) - display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB) + display_array_pro = p.Simulate() T = tk.Text(SB.frame, height=1, width=15) T.grid(columnspan=5)