|
|
@@ -49,6 +49,7 @@ class Protanopie(Dyschromasie): |
|
|
|
|
|
|
|
# Gammakorrektur durchfuehren
|
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
|
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
for x in range(3):
|
|
|
@@ -57,12 +58,10 @@ class Protanopie(Dyschromasie): |
|
|
|
# Einzelne Pixelwertberechnung
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
|
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j])
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
|
|
|
|
|
# Rücktransformation der Gammawerte
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
@@ -89,8 +88,7 @@ class Deuteranopie(Dyschromasie): |
|
|
|
# Einzelne Pixelwertberechnung
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
|
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j])
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
@@ -121,8 +119,7 @@ class Tritanopie(Dyschromasie): |
|
|
|
# Einzelne Pixelwertberechnung
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
|
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j])
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
@@ -229,6 +226,7 @@ def browse(): |
|
|
|
# Einspeichern der Path-Informationen
|
|
|
|
global img, rows, cols, kanaele
|
|
|
|
img = cv2.imread(path)
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
rows, cols, kanaele = img.shape
|
|
|
|
|
|
|
|
|
|
|
@@ -236,7 +234,7 @@ def simulate(): |
|
|
|
global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri
|
|
|
|
if sim_deut.get():
|
|
|
|
d = Deuteranopie(img, rows, cols, kanaele, simGrad.get()/100)
|
|
|
|
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
|
display_array_deut = d.Simulate()
|
|
|
|
|
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
|
T.grid(columnspan=5)
|
|
|
@@ -249,7 +247,7 @@ def simulate(): |
|
|
|
sim_pic_deut.grid(columnspan=5)
|
|
|
|
elif sim_tri.get():
|
|
|
|
t = Tritanopie(img, rows, cols, kanaele, simGrad.get()/100)
|
|
|
|
display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
|
display_array_tri = t.Simulate()
|
|
|
|
|
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
|
T.grid(columnspan=5)
|
|
|
@@ -262,7 +260,7 @@ def simulate(): |
|
|
|
sim_pic_tri.grid(columnspan=5)
|
|
|
|
elif sim_pro.get():
|
|
|
|
p = Protanopie(img, rows, cols, kanaele, simGrad.get()/100)
|
|
|
|
display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
|
display_array_pro = p.Simulate()
|
|
|
|
|
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
|
T.grid(columnspan=5)
|