Einfügen der Gammakorrekturen als Funktionen
Vor der eigentlichen Anwendung des Algorithmus müssen die Gammakorrekturwerte gefiltert und vor der Darstellung des bearbeiteten Bildes wieder hinzugefügt werden.
This commit is contained in:
parent
92a0f9e03c
commit
18623a2e01
@ -1,16 +1,37 @@
|
||||
import cv2 #OpenCV fuer Bildbearbeitung
|
||||
import tkinter #Zum Erstellen von GUIs
|
||||
import numpy as np #Numpy Import
|
||||
import cv2 # OpenCV fuer Bildbearbeitung
|
||||
import tkinter # Zum Erstellen von GUIs
|
||||
import numpy as np # Numpy Import
|
||||
import sys
|
||||
|
||||
#Einlesen des Bildes
|
||||
# Einlesen des Bildes
|
||||
script_dir = sys.path[0]
|
||||
path = script_dir[:-4] + "Beispielbilder\lena.jpg"
|
||||
image = cv2.imread(path) #Einlesen des Bildes (noch hardcodiert, sollte dann in GUI gehen)
|
||||
image = cv2.imread(path) # Einlesen des Bildes (noch hardcodiert, sollte dann in GUI gehen)
|
||||
|
||||
rows = image.shape[0] # Auslesen der Zeilenanzahl
|
||||
cols = image.shape[1] # Auslesen der Spaltenanzahl
|
||||
kanaele = image.shape[2] # Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild)
|
||||
|
||||
|
||||
def gammaCorrection(v):
|
||||
if (v <= 0.04045 * 255):
|
||||
return ((v / 255) / 12.92)
|
||||
elif (v > 0.04045 * 255):
|
||||
return (((v / 255) + 0.055) / 1.055) ** 2.4
|
||||
else:
|
||||
print("Ungültiger Wert!!")
|
||||
return 1
|
||||
|
||||
|
||||
def reverseGammaCorrection(v_reverse):
|
||||
if (v_reverse <= 0.0031308):
|
||||
return 255 * (12.92 * v_reverse)
|
||||
elif (v_reverse > 0.0031308):
|
||||
return 255 * (1.055 * v_reverse ** 0.41666 - 0.055)
|
||||
else:
|
||||
print("Ungültiger Wert!!!")
|
||||
return 1
|
||||
|
||||
rows = image.shape[0] #Auslesen der Zeilenanzahl
|
||||
cols = image.shape[1] #Auslesen der Spaltenanzahl
|
||||
kanaele = image.shape[2] #Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild)
|
||||
|
||||
'''
|
||||
0.4124564 0.3575761 0.1804375 Transformationsmatrix fuer XYZ Werte aus gegebenen RGB Werten!
|
||||
@ -18,7 +39,10 @@ RGB2XYZ = 0.2126729 0.7151522 0.0721750
|
||||
0.0193339 0.1191920 0.9503041
|
||||
'''
|
||||
|
||||
RGB2XYZ = np.array([[0.4124564,0.3575761,0.1804375],[0.2126729,0.7151522,0.0721750],[0.0193339,0.1191920,0.9503041]])
|
||||
RGB2XYZ = np.array(
|
||||
[[0.4124564, 0.3575761, 0.1804375],
|
||||
[0.2126729, 0.7151522, 0.0721750],
|
||||
[0.0193339, 0.1191920, 0.9503041]])
|
||||
|
||||
'''
|
||||
3.2404542 -1.5371385 -0.4985314 Transformationsmatrix fuer RGB Werte aus gegebenen XYZ Werten!
|
||||
@ -26,7 +50,10 @@ XYZ2RGB = -0.9692660 1.8760108 0.0415560 (RGB nur ganzzahlig --> Runden!!)
|
||||
0.0556434 -0.2040259 1.0572252
|
||||
'''
|
||||
|
||||
XYZ2RGB = np.array([[3.2404542,-1.5371385,-0.4985314],[-0.9692660,1.8760108,0.0415560],[0.0556434,-0.2040259,1.0572252]])
|
||||
XYZ2RGB = np.array(
|
||||
[[3.2404542, -1.5371385, -0.4985314],
|
||||
[-0.9692660, 1.8760108, 0.0415560],
|
||||
[0.0556434, -0.2040259, 1.0572252]])
|
||||
|
||||
'''
|
||||
0.4002 0.7076 −0.0808 Transformationsmatrix fuer LMS Werte aus gegebenen XYZ Werten
|
||||
@ -34,8 +61,9 @@ M_HPE = −0.2263 1.1653 0.0457
|
||||
0 0 0.9182
|
||||
'''
|
||||
|
||||
M_HPE = np.array([[0.4002,0.7076,-0.0808],[-0.2263,1.1653,0.0457],[0,0,0.9182]])
|
||||
|
||||
M_HPE = np.array([[0.4002, 0.7076, -0.0808],
|
||||
[-0.2263, 1.1653, 0.0457],
|
||||
[0, 0, 0.9182]])
|
||||
|
||||
# for i in range(rows): #Durchgehen aller Pixel des Bildes
|
||||
# for j in range(cols):
|
||||
@ -43,6 +71,6 @@ M_HPE = np.array([[0.4002,0.7076,-0.0808],[-0.2263,1.1653,0.0457],[0,0,0.9182]])
|
||||
# #Umwandlungsalgorithmus
|
||||
|
||||
|
||||
cv2.namedWindow("Display") #Displaywindow erstellen
|
||||
cv2.imshow("Display",image) #Bild zeigen
|
||||
cv2.waitKey(0) #Fenster offen halten
|
||||
cv2.namedWindow("Display") # Displaywindow erstellen
|
||||
cv2.imshow("Display", image) # Bild zeigen
|
||||
cv2.waitKey(0) # Fenster offen halten
|
||||
|
Loading…
x
Reference in New Issue
Block a user