Browse Source

Einfügen der allgemeinen Tranformationsmatrix T und der Inversen T^-1

Zwar hatten wir bereits die M_HPE und M_sRGB eincodiert, jedoch lassen sich beide Matrizen mit Multiplikation bereits zusammenfassen, was den Code übersichtlicher macht. Zudem reicht nach Gammakorrektur nun eine Matrixmultiplikation für die komplette Konvertierung aus!
master
Max Sponsel 4 years ago
parent
commit
24ab0a1f85
1 changed files with 12 additions and 24 deletions
  1. 12
    24
      Code/Dyschromasie.py

+ 12
- 24
Code/Dyschromasie.py View File

print("Ungültiger Wert!!!") print("Ungültiger Wert!!!")
return 1 return 1
''' '''
0.4124564 0.3575761 0.1804375 Transformationsmatrix fuer XYZ Werte aus gegebenen RGB Werten!
RGB2XYZ = 0.2126729 0.7151522 0.0721750
0.0193339 0.1191920 0.9503041
0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum
T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen
0.01775239 0.10944209 0.87256922 T*RGB_Farbverktor = LMS_Farbvektor
''' '''
RGB2XYZ = np.array(
[[0.4124564, 0.3575761, 0.1804375],
[0.2126729, 0.7151522, 0.0721750],
[0.0193339, 0.1191920, 0.9503041]])
T = np.array([[0.31399022,0.63951294,0.04649755],
[0.15537241,0.75789446,0.08670142],
[0.01775239,0.10944209,0.87256922]])
''' '''
3.2404542 -1.5371385 -0.4985314 Transformationsmatrix fuer RGB Werte aus gegebenen XYZ Werten!
XYZ2RGB = -0.9692660 1.8760108 0.0415560 (RGB nur ganzzahlig --> Runden!!)
0.0556434 -0.2040259 1.0572252
5.47221206 −4.6419601 0.16963708 Rücktransformationsmatrix (Inverse von T)
T_reversed = -1.1252419 2.29317094 −0.1678952 T_reversed Ü LMS_Farbvektor = RBG_Farbvektor
0.02980165 −0.19318073 1.16364789
''' '''
XYZ2RGB = np.array(
[[3.2404542, -1.5371385, -0.4985314],
[-0.9692660, 1.8760108, 0.0415560],
[0.0556434, -0.2040259, 1.0572252]])
'''
0.4002 0.7076 −0.0808 Transformationsmatrix fuer LMS Werte aus gegebenen XYZ Werten
M_HPE = −0.2263 1.1653 0.0457
0 0 0.9182
'''
T_reversed = np.array([[5.47221206,-4.6419601,0.16963708],
[-1.1252419,2.29317094,-0.1678952],
[0.02980165,-0.19318073,1.16364789]])
M_HPE = np.array([[0.4002, 0.7076, -0.0808],
[-0.2263, 1.1653, 0.0457],
[0, 0, 0.9182]])
# for i in range(rows): #Durchgehen aller Pixel des Bildes # for i in range(rows): #Durchgehen aller Pixel des Bildes
# for j in range(cols): # for j in range(cols):

Loading…
Cancel
Save