Applikation zur Simulation der verschiedenen Fehlsichtigkeiten
Nachdem nun die Theorie hinter der Simulation geklärt ist, wenden wir uns jetzt dem Applikationbau zu.
This commit is contained in:
parent
28325c408e
commit
3ee51d0be4
219
Code/Dyschromasie-Applikation.py
Normal file
219
Code/Dyschromasie-Applikation.py
Normal file
@ -0,0 +1,219 @@
|
||||
from PIL import Image, ImageTk
|
||||
import PIL
|
||||
import tkinter as tk
|
||||
from tkinter import filedialog, messagebox
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Dyschromasie:
|
||||
cb_image = np.array([]).astype('float64')
|
||||
sim_image = np.array([]).astype('uint8')
|
||||
|
||||
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0):
|
||||
self.rows = rows
|
||||
self.cols = cols
|
||||
self.kanaele = kanaele
|
||||
self.img_mat = img_mat
|
||||
|
||||
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
||||
[0.15537241, 0.75789446, 0.08670142],
|
||||
[0.01775239, 0.10944209, 0.87256922]])
|
||||
|
||||
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
|
||||
[-1.1252419, 2.29317094, -0.1678952],
|
||||
[0.02980165, -0.19318073, 1.16364789]])
|
||||
|
||||
def gammaCorrection(self, v):
|
||||
if v <= 0.04045 * 255:
|
||||
return float(((v / 255) / 12.92))
|
||||
elif v > 0.04045 * 255:
|
||||
return float((((v / 255) + 0.055) / 1.055) ** 2.4)
|
||||
|
||||
def reverseGammaCorrection(self, v_reverse):
|
||||
if v_reverse <= 0.0031308:
|
||||
return int(255 * (12.92 * v_reverse))
|
||||
elif v_reverse > 0.0031308:
|
||||
return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
|
||||
|
||||
|
||||
class Protanopie(Dyschromasie):
|
||||
sim_mat = np.array([[0, 1.05118294, -0.05116099],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
|
||||
def Simulate(self):
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x])
|
||||
|
||||
# Einzelne Pixelwertberechnung
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
|
||||
# Rücktransformation der Gammawerte
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
|
||||
return self.sim_image
|
||||
|
||||
|
||||
class Deuteranopie(Dyschromasie):
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0.9513092, 0, 0.04866992],
|
||||
[0, 0, 1]])
|
||||
|
||||
def Simulate(self):
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x])
|
||||
|
||||
# Einzelne Pixelwertberechnung
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
|
||||
# Rücktransformation der Gammawerte
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
return self.sim_image
|
||||
|
||||
|
||||
class Tritanopie(Dyschromasie):
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[-0.86744736, 1.86727089, 0]])
|
||||
|
||||
def Simulate(self):
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x])
|
||||
|
||||
# Einzelne Pixelwertberechnung
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
|
||||
# Rücktransformation der Gammawerte
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
return self.sim_image
|
||||
|
||||
root = tk.Tk()
|
||||
root.title("Projekt Dyschromasie")
|
||||
|
||||
img = np.array([])
|
||||
rows = 0
|
||||
cols = 0
|
||||
kanaele = 0
|
||||
|
||||
sim_pro = tk.IntVar(root)
|
||||
sim_deut = tk.IntVar(root)
|
||||
sim_tri = tk.IntVar(root)
|
||||
|
||||
def browse():
|
||||
# Auswahl des FilePaths
|
||||
try:
|
||||
path = tk.filedialog.askopenfilename(filetypes=[("Image File", '.jpg')])
|
||||
im = Image.open(path)
|
||||
except:
|
||||
tk.messagebox.showerror(title='Datenfehler', message='Kein Bild gefunden/ausgewählt')
|
||||
global simulateButton
|
||||
if len(path) > 0:
|
||||
simulateButton.config(state='active')
|
||||
|
||||
# Anzeigen des Bildes
|
||||
tkimage = ImageTk.PhotoImage(im)
|
||||
myvar = tk.Label(root, image=tkimage)
|
||||
myvar.image = tkimage
|
||||
myvar.grid(columnspan=5)
|
||||
|
||||
# Einspeichern der Path-Informationen
|
||||
global img, rows, cols, kanaele
|
||||
img = cv2.imread(path)
|
||||
rows, cols, kanaele = img.shape
|
||||
|
||||
|
||||
def simulate():
|
||||
global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri
|
||||
|
||||
if sim_deut.get():
|
||||
d = Deuteranopie(img, rows, cols, kanaele)
|
||||
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
||||
|
||||
T = tk.Text(root,height=1,width=15)
|
||||
T.grid(columnspan=5)
|
||||
T.insert('current',"Deutranopie:")
|
||||
|
||||
conv_SimulationPic_deut = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_deut))
|
||||
sim_pic_deut = tk.Label(root, image=conv_SimulationPic_deut)
|
||||
sim_pic_deut.Image = conv_SimulationPic_deut
|
||||
sim_pic_deut.grid(columnspan=5)
|
||||
elif sim_tri.get():
|
||||
t = Tritanopie(img, rows, cols, kanaele)
|
||||
display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB)
|
||||
|
||||
T = tk.Text(root, height=1, width=15)
|
||||
T.grid(columnspan=5)
|
||||
T.insert('current', "Tritanopie:")
|
||||
|
||||
conv_SimulationPic_tri = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_tri))
|
||||
sim_pic_tri = tk.Label(root, image=conv_SimulationPic_tri)
|
||||
sim_pic_tri.Image = conv_SimulationPic_tri
|
||||
sim_pic_tri.grid(columnspan=5)
|
||||
elif sim_pro.get():
|
||||
p = Protanopie(img, rows, cols, kanaele)
|
||||
display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB)
|
||||
|
||||
T = tk.Text(root, height=1, width=15)
|
||||
T.grid(columnspan=5)
|
||||
T.insert('current', "Protanopie:")
|
||||
|
||||
conv_SimulationPic_pro = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_pro))
|
||||
sim_pic_pro = tk.Label(root, image=conv_SimulationPic_pro)
|
||||
sim_pic_pro.Image = conv_SimulationPic_pro
|
||||
sim_pic_pro.grid(columnspan=5)
|
||||
|
||||
|
||||
|
||||
btn = tk.Button(root, text="Browse", width=25, command=browse, bg='light blue')
|
||||
btn.grid(column = 0, row = 0,columnspan=2)
|
||||
|
||||
simulateButton = tk.Button(root, text="Simulate", width=25, command=simulate, bg='light blue')
|
||||
simulateButton.grid(column = 1, row = 0,columnspan=2)
|
||||
simulateButton.config(state='disabled')
|
||||
|
||||
checkButton_p = tk.Checkbutton(root, text="Protanop", variable=sim_pro, onvalue=1, offvalue=0, height=5, width=20)
|
||||
checkButton_d = tk.Checkbutton(root, text="Deutanop", variable=sim_deut, onvalue=1, offvalue=0, height=5, width=20)
|
||||
checkButton_t = tk.Checkbutton(root, text="Tritanop", variable=sim_tri, onvalue=1, offvalue=0, height=5, width=20)
|
||||
|
||||
checkButton_p.grid(column = 0, row = 1)
|
||||
checkButton_d.grid(column = 1, row = 1)
|
||||
checkButton_t.grid(column = 2, row = 1)
|
||||
|
||||
root.mainloop()
|
Loading…
x
Reference in New Issue
Block a user