Browse Source

Applikation zur Simulation der verschiedenen Fehlsichtigkeiten

Nachdem nun die Theorie hinter der Simulation geklärt ist, wenden wir uns jetzt dem Applikationbau zu.
master
Maximilian Sponsel 3 years ago
parent
commit
3ee51d0be4
1 changed files with 219 additions and 0 deletions
  1. 219
    0
      Code/Dyschromasie-Applikation.py

+ 219
- 0
Code/Dyschromasie-Applikation.py View File

@@ -0,0 +1,219 @@
from PIL import Image, ImageTk
import PIL
import tkinter as tk
from tkinter import filedialog, messagebox
import cv2
import numpy as np
class Dyschromasie:
cb_image = np.array([]).astype('float64')
sim_image = np.array([]).astype('uint8')
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0):
self.rows = rows
self.cols = cols
self.kanaele = kanaele
self.img_mat = img_mat
T = np.array([[0.31399022, 0.63951294, 0.04649755],
[0.15537241, 0.75789446, 0.08670142],
[0.01775239, 0.10944209, 0.87256922]])
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
[-1.1252419, 2.29317094, -0.1678952],
[0.02980165, -0.19318073, 1.16364789]])
def gammaCorrection(self, v):
if v <= 0.04045 * 255:
return float(((v / 255) / 12.92))
elif v > 0.04045 * 255:
return float((((v / 255) + 0.055) / 1.055) ** 2.4)
def reverseGammaCorrection(self, v_reverse):
if v_reverse <= 0.0031308:
return int(255 * (12.92 * v_reverse))
elif v_reverse > 0.0031308:
return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
class Protanopie(Dyschromasie):
sim_mat = np.array([[0, 1.05118294, -0.05116099],
[0, 1, 0],
[0, 0, 1]])
def Simulate(self):
# Gammakorrektur durchfuehren
self.cb_image = np.copy(self.img_mat).astype('float64')
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x])
# Einzelne Pixelwertberechnung
for i in range(self.rows):
for j in range(self.cols):
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
self.sim_image = np.copy(self.cb_image)
self.sim_image = self.sim_image.astype('uint8')
# Rücktransformation der Gammawerte
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
return self.sim_image
class Deuteranopie(Dyschromasie):
sim_mat = np.array([[1, 0, 0],
[0.9513092, 0, 0.04866992],
[0, 0, 1]])
def Simulate(self):
# Gammakorrektur durchfuehren
self.cb_image = np.copy(self.img_mat).astype('float64')
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x])
# Einzelne Pixelwertberechnung
for i in range(self.rows):
for j in range(self.cols):
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
self.sim_image = np.copy(self.cb_image)
self.sim_image = self.sim_image.astype('uint8')
# Rücktransformation der Gammawerte
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
return self.sim_image
class Tritanopie(Dyschromasie):
sim_mat = np.array([[1, 0, 0],
[0, 1, 0],
[-0.86744736, 1.86727089, 0]])
def Simulate(self):
# Gammakorrektur durchfuehren
self.cb_image = np.copy(self.img_mat).astype('float64')
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x])
# Einzelne Pixelwertberechnung
for i in range(self.rows):
for j in range(self.cols):
self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
self.sim_image = np.copy(self.cb_image)
self.sim_image = self.sim_image.astype('uint8')
# Rücktransformation der Gammawerte
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
return self.sim_image
root = tk.Tk()
root.title("Projekt Dyschromasie")
img = np.array([])
rows = 0
cols = 0
kanaele = 0
sim_pro = tk.IntVar(root)
sim_deut = tk.IntVar(root)
sim_tri = tk.IntVar(root)
def browse():
# Auswahl des FilePaths
try:
path = tk.filedialog.askopenfilename(filetypes=[("Image File", '.jpg')])
im = Image.open(path)
except:
tk.messagebox.showerror(title='Datenfehler', message='Kein Bild gefunden/ausgewählt')
global simulateButton
if len(path) > 0:
simulateButton.config(state='active')
# Anzeigen des Bildes
tkimage = ImageTk.PhotoImage(im)
myvar = tk.Label(root, image=tkimage)
myvar.image = tkimage
myvar.grid(columnspan=5)
# Einspeichern der Path-Informationen
global img, rows, cols, kanaele
img = cv2.imread(path)
rows, cols, kanaele = img.shape
def simulate():
global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri
if sim_deut.get():
d = Deuteranopie(img, rows, cols, kanaele)
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
T = tk.Text(root,height=1,width=15)
T.grid(columnspan=5)
T.insert('current',"Deutranopie:")
conv_SimulationPic_deut = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_deut))
sim_pic_deut = tk.Label(root, image=conv_SimulationPic_deut)
sim_pic_deut.Image = conv_SimulationPic_deut
sim_pic_deut.grid(columnspan=5)
elif sim_tri.get():
t = Tritanopie(img, rows, cols, kanaele)
display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB)
T = tk.Text(root, height=1, width=15)
T.grid(columnspan=5)
T.insert('current', "Tritanopie:")
conv_SimulationPic_tri = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_tri))
sim_pic_tri = tk.Label(root, image=conv_SimulationPic_tri)
sim_pic_tri.Image = conv_SimulationPic_tri
sim_pic_tri.grid(columnspan=5)
elif sim_pro.get():
p = Protanopie(img, rows, cols, kanaele)
display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB)
T = tk.Text(root, height=1, width=15)
T.grid(columnspan=5)
T.insert('current', "Protanopie:")
conv_SimulationPic_pro = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_pro))
sim_pic_pro = tk.Label(root, image=conv_SimulationPic_pro)
sim_pic_pro.Image = conv_SimulationPic_pro
sim_pic_pro.grid(columnspan=5)
btn = tk.Button(root, text="Browse", width=25, command=browse, bg='light blue')
btn.grid(column = 0, row = 0,columnspan=2)
simulateButton = tk.Button(root, text="Simulate", width=25, command=simulate, bg='light blue')
simulateButton.grid(column = 1, row = 0,columnspan=2)
simulateButton.config(state='disabled')
checkButton_p = tk.Checkbutton(root, text="Protanop", variable=sim_pro, onvalue=1, offvalue=0, height=5, width=20)
checkButton_d = tk.Checkbutton(root, text="Deutanop", variable=sim_deut, onvalue=1, offvalue=0, height=5, width=20)
checkButton_t = tk.Checkbutton(root, text="Tritanop", variable=sim_tri, onvalue=1, offvalue=0, height=5, width=20)
checkButton_p.grid(column = 0, row = 1)
checkButton_d.grid(column = 1, row = 1)
checkButton_t.grid(column = 2, row = 1)
root.mainloop()

Loading…
Cancel
Save