diff --git a/Code/Dyschromasie.py b/Code/Dyschromasie.py index a328cb5..3725ec5 100644 --- a/Code/Dyschromasie.py +++ b/Code/Dyschromasie.py @@ -12,35 +12,44 @@ rows = image.shape[0] # Auslesen der Zeilenanzahl cols = image.shape[1] # Auslesen der Spaltenanzahl kanaele = image.shape[2] # Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild) - def gammaCorrection(v): - if (v <= 0.04045 * 255): - return ((v / 255) / 12.92) - elif (v > 0.04045 * 255): - return (((v / 255) + 0.055) / 1.055) ** 2.4 + if v <= 0.04045 * 255: + return float(((v / 255) / 12.92)) + elif v > 0.04045 * 255: + return float((((v / 255) + 0.055) / 1.055) ** 2.4) else: print("Ungültiger Wert!!") return 1 +print(gammaCorrection(image[0,0,0])) def reverseGammaCorrection(v_reverse): - if (v_reverse <= 0.0031308): - return 255 * (12.92 * v_reverse) - elif (v_reverse > 0.0031308): - return 255 * (1.055 * v_reverse ** 0.41666 - 0.055) + if v_reverse <= 0.0031308: + return int(255 * (12.92 * v_reverse)) + elif v_reverse > 0.0031308: + return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055)) else: print("Ungültiger Wert!!!") return 1 + +cb_image = np.copy(image) + +for i in range(rows): + for j in range(cols): + for x in range(3): + cb_image[i,j,x] = gammaCorrection(float(image[i,j,x])) + +print(cb_image[0,0]) ''' 0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen 0.01775239 0.10944209 0.87256922 T*RGB_Farbverktor = LMS_Farbvektor ''' -T = np.array([[0.31399022,0.63951294,0.04649755], - [0.15537241,0.75789446,0.08670142], - [0.01775239,0.10944209,0.87256922]]) +T = np.array([[0.31399022, 0.63951294, 0.04649755], + [0.15537241, 0.75789446, 0.08670142], + [0.01775239, 0.10944209, 0.87256922]]) ''' 5.47221206 −4.6419601 0.16963708 Rücktransformationsmatrix (Inverse von T) @@ -48,15 +57,12 @@ T_reversed = -1.1252419 2.29317094 −0.1678952 T_reversed Ü LMS_Farbvek 0.02980165 −0.19318073 1.16364789 ''' -T_reversed = np.array([[5.47221206,-4.6419601,0.16963708], - [-1.1252419,2.29317094,-0.1678952], - [0.02980165,-0.19318073,1.16364789]]) +T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708], + [-1.1252419, 2.29317094, -0.1678952], + [0.02980165, -0.19318073, 1.16364789]]) - -# for i in range(rows): #Durchgehen aller Pixel des Bildes -# for j in range(cols): -# k = image[i,j] -# #Umwandlungsalgorithmus +# Multiplikation der einzelnen Pixelwerte +# T.dot(image[x][y]) cv2.namedWindow("Display") # Displaywindow erstellen