Browse Source

Angepasster Daltonizationalgorithmus

https://github.com/indranilsinharoy/daltonization/blob/master/daltonize.py

Implementierung des gezeigten Algorithmus. Wichtig ist die Int64 Konvertierung , um Überläufe zu verhindern.
master
Max Sponsel 4 years ago
parent
commit
638fadeb28
2 changed files with 12 additions and 7 deletions
  1. BIN
      Beispielbilder/ishihara_plate_45_protanopia_daltonize.jpg
  2. 12
    7
      Code/Farbaenderung.py

BIN
Beispielbilder/ishihara_plate_45_protanopia_daltonize.jpg View File


+ 12
- 7
Code/Farbaenderung.py View File

script_dir = sys.path[0] script_dir = sys.path[0]
path = script_dir[:-4] + "Beispielbilder\Fall_trees.jpg"
path = script_dir[:-4] + r'Beispielbilder\Fall_trees.jpg'
image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB) image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
rows, cols, kanaele = image.shape rows, cols, kanaele = image.shape
simulated_image = p.Simulate() simulated_image = p.Simulate()
E = np.copy(simulated_image)
E = np.copy(simulated_image).astype('int64')
for i in range(rows): for i in range(rows):
for j in range(cols): for j in range(cols):
for x in range(3): for x in range(3):
E[i, j, x] = abs(int(simulated_image[i, j, x]) - int(image[i, j, x]))
E[i, j, x] = abs(int(image[i, j, x]) - int(simulated_image[i, j, x]))
ERR = np.zeros_like(image)
ERR = np.zeros_like(image).astype('int64')
err2mod = np.array([[0,0,0],[0.7,1,0],[0.7,0,1]]) err2mod = np.array([[0,0,0],[0.7,1,0],[0.7,0,1]])
err = E[i,j,:3] err = E[i,j,:3]
ERR[i,j,:3] = np.dot(err2mod, err) ERR[i,j,:3] = np.dot(err2mod, err)
dtpn = np.copy(image)
dtpn = np.copy(image).astype('int64')
for i in range(rows): for i in range(rows):
for j in range(cols): for j in range(cols):
for x in range(3): for x in range(3):
dtpn[i, j, x] = (int(ERR[i, j, x]) + int(image[i, j, x]))
dtpn[i, j, x] = abs(int(ERR[i, j, x]) + int(image[i, j, x]))
for i in range(rows): for i in range(rows):
for j in range(cols): for j in range(cols):
dtpn[i, j, 2] = max(0, dtpn[i, j, 2]) dtpn[i, j, 2] = max(0, dtpn[i, j, 2])
dtpn[i, j, 2] = min(255, dtpn[i, j, 2]) dtpn[i, j, 2] = min(255, dtpn[i, j, 2])
cv2.imshow('Dalt_Img', cv2.cvtColor(dtpn, cv2.COLOR_RGB2BGR))
result = dtpn.astype('uint8')
dalt = Dyschromasie(result,rows,cols, kanaele, 1, 'p')
dalt_p = dalt.Simulate()
cv2.imshow('Dalt_Img', cv2.cvtColor(dalt_p, cv2.COLOR_RGB2BGR))
cv2.waitKey(0) cv2.waitKey(0)

Loading…
Cancel
Save