Browse Source

Daltonization in die Klasse eingefügt

Funktion der Daltonization in die Klasse Dyschromasie eingefügt.
master
Max Sponsel 4 years ago
parent
commit
8498500c68
1 changed files with 37 additions and 36 deletions
  1. 37
    36
      Code/Farbaenderung.py

+ 37
- 36
Code/Farbaenderung.py View File

@@ -2,12 +2,13 @@ import numpy as np
import cv2
import sys
def createGammaLookup():
return np.array([removeGammaCorrection(i) for i in np.arange(0, 256)]).astype("float64")
def createReverseGammaLookup():
return np.array([applyGammaCorrection(i/255) for i in np.arange(0.0, 256.0)]).astype("uint8")
return np.array([applyGammaCorrection(i / 255) for i in np.arange(0.0, 256.0)]).astype("uint8")
def removeGammaCorrection(v):
@@ -86,52 +87,52 @@ class Dyschromasie:
return self.sim_image
def daltonize(self):
script_dir = sys.path[0]
path = script_dir[:-4] + r'Beispielbilder\Fall_trees.jpg'
image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
rows, cols, kanaele = image.shape
err2mod = np.array([[0, 0, 0], [0.7, 1, 0], [0.7, 0, 1]])
simulated_image = self.Simulate()
p = Dyschromasie(image, rows, cols, kanaele, 1, 'p')
E = np.copy(simulated_image).astype('int32')
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
E[i, j, x] = abs(int(self.img_mat[i, j, x]) - int(simulated_image[i, j, x]))
simulated_image = p.Simulate()
ERR = np.zeros_like(image).astype('int32')
E = np.copy(simulated_image).astype('int64')
for i in range(rows):
for j in range(cols):
for x in range(3):
E[i, j, x] = abs(int(image[i, j, x]) - int(simulated_image[i, j, x]))
for i in range(self.rows):
for j in range(self.cols):
err = E[i, j, :3]
ERR[i, j, :3] = np.dot(err2mod, err)
ERR = np.zeros_like(image).astype('int64')
dtpn = np.copy(image).astype('int32')
err2mod = np.array([[0,0,0],[0.7,1,0],[0.7,0,1]])
for i in range(self.rows):
for j in range(self.cols):
for x in range(3):
dtpn[i, j, x] = abs(int(ERR[i, j, x]) + int(image[i, j, x]))
for i in range(rows):
for j in range(cols):
err = E[i,j,:3]
ERR[i,j,:3] = np.dot(err2mod, err)
for i in range(rows):
for j in range(cols):
dtpn[i, j, 0] = max(0, dtpn[i, j, 0])
dtpn[i, j, 0] = min(255, dtpn[i, j, 0])
dtpn[i, j, 1] = max(0, dtpn[i, j, 1])
dtpn[i, j, 1] = min(255, dtpn[i, j, 1])
dtpn[i, j, 2] = max(0, dtpn[i, j, 2])
dtpn[i, j, 2] = min(255, dtpn[i, j, 2])
dtpn = np.copy(image).astype('int64')
result = dtpn.astype('uint8')
for i in range(rows):
for j in range(cols):
for x in range(3):
dtpn[i, j, x] = abs(int(ERR[i, j, x]) + int(image[i, j, x]))
dalt = Dyschromasie(result, self.rows, self.cols, self.kanaele, self.sim_faktor, self.sim_kind)
return dalt.Simulate()
for i in range(rows):
for j in range(cols):
dtpn[i, j, 0] = max(0, dtpn[i, j, 0])
dtpn[i, j, 0] = min(255, dtpn[i, j, 0])
dtpn[i, j, 1] = max(0, dtpn[i, j, 1])
dtpn[i, j, 1] = min(255, dtpn[i, j, 1])
dtpn[i, j, 2] = max(0, dtpn[i, j, 2])
dtpn[i, j, 2] = min(255, dtpn[i, j, 2])
result = dtpn.astype('uint8')
script_dir = sys.path[0]
path = script_dir[:-4] + r'Beispielbilder\rot-gruen-schwaeche-test-bild.jpg'
image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
dalt = Dyschromasie(result,rows,cols, kanaele, 1, 'p')
dalt_p = dalt.Simulate()
rows, cols, kanaele = image.shape
cv2.imshow('Dalt_Img', cv2.cvtColor(dalt_p, cv2.COLOR_RGB2BGR))
dalt = Dyschromasie(image, rows, cols, kanaele, 1, 'p')
cv2.imshow('Dalt_Img', cv2.cvtColor(dalt.daltonize(), cv2.COLOR_RGB2BGR))
cv2.waitKey(0)

Loading…
Cancel
Save