Abschwächung der Simulationsstärke
Durch Anpassungen in den Simulationsmatrizen ergeben sich Abschwächungsmuster. Somit können für verschiedene Probanden unterschiedliche Stärken der Sehschwäche simuliert werden.
This commit is contained in:
parent
9980f03bdd
commit
a1ebdb827c
@ -5,17 +5,19 @@ from tkinter import filedialog, messagebox
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
root = tk.Tk()
|
||||
simGrad = tk.IntVar(root)
|
||||
|
||||
class Dyschromasie:
|
||||
global simGrad
|
||||
cb_image = np.array([]).astype('float64')
|
||||
sim_image = np.array([]).astype('uint8')
|
||||
|
||||
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0):
|
||||
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0,sim_faktor=0):
|
||||
self.rows = rows
|
||||
self.cols = cols
|
||||
self.kanaele = kanaele
|
||||
self.img_mat = img_mat
|
||||
self.sim_faktor = sim_faktor
|
||||
|
||||
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
||||
[0.15537241, 0.75789446, 0.08670142],
|
||||
@ -39,11 +41,12 @@ class Dyschromasie:
|
||||
|
||||
|
||||
class Protanopie(Dyschromasie):
|
||||
sim_mat = np.array([[0, 1.05118294, -0.05116099],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
|
||||
def Simulate(self):
|
||||
|
||||
sim_mat = np.array([[(1 - self.sim_faktor), 1.05118294 * self.sim_faktor, -0.05116099 * self.sim_faktor],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
for i in range(self.rows):
|
||||
@ -55,7 +58,7 @@ class Protanopie(Dyschromasie):
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = np.flipud(
|
||||
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
@ -66,25 +69,16 @@ class Protanopie(Dyschromasie):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
|
||||
# Anpassung fuer den Slider
|
||||
if(simGrad.get() != 0):
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
for x in range(3):
|
||||
if self.sim_image[i, j, x] > img[i, j, x]:
|
||||
self.sim_image[i, j, x] = img[i, j, x] + abs(self.sim_image[i, j, x] - img[i, j, x])* (simGrad.get()/100)
|
||||
|
||||
elif self.sim_image[i, j, x] < img[i, j, x]:
|
||||
self.sim_image[i, j, x] = self.sim_image[i, j, x] + abs(img[i, j, x] - self.sim_image[i, j, x])* (simGrad.get()/100)
|
||||
return self.sim_image
|
||||
|
||||
|
||||
class Deuteranopie(Dyschromasie):
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0.9513092, 0, 0.04866992],
|
||||
[0, 0, 1]])
|
||||
|
||||
def Simulate(self):
|
||||
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0.9513092 * self.sim_faktor, (1 - self.sim_faktor), 0.04866992 * self.sim_faktor],
|
||||
[0, 0, 1]])
|
||||
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
for i in range(self.rows):
|
||||
@ -96,7 +90,7 @@ class Deuteranopie(Dyschromasie):
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = np.flipud(
|
||||
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
@ -107,26 +101,16 @@ class Deuteranopie(Dyschromasie):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
|
||||
# Anpassung fuer den Slider
|
||||
if (simGrad.get() != 0):
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
for x in range(3):
|
||||
if self.sim_image[i, j, x] > img[i, j, x]:
|
||||
self.sim_image[i, j, x] = img[i, j, x] + abs(self.sim_image[i, j, x] - img[i, j, x]) * (simGrad.get() / 100)
|
||||
|
||||
elif self.sim_image[i, j, x] < img[i, j, x]:
|
||||
self.sim_image[i, j, x] = self.sim_image[i, j, x] + abs(img[i, j, x] - self.sim_image[i, j, x]) * (simGrad.get() / 100)
|
||||
|
||||
return self.sim_image
|
||||
|
||||
|
||||
class Tritanopie(Dyschromasie):
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[-0.86744736, 1.86727089, 0]])
|
||||
|
||||
def Simulate(self):
|
||||
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[-0.86744736 * self.sim_faktor, 1.86727089 * self.sim_faktor, (1 - self.sim_faktor)]])
|
||||
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
for i in range(self.rows):
|
||||
@ -138,7 +122,7 @@ class Tritanopie(Dyschromasie):
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = np.flipud(
|
||||
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
@ -149,17 +133,6 @@ class Tritanopie(Dyschromasie):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
|
||||
# Anpassung fuer den Slider
|
||||
if (simGrad.get() != 0):
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
for x in range(3):
|
||||
if self.sim_image[i, j, x] > img[i, j, x]:
|
||||
self.sim_image[i, j, x] = img[i, j, x] + abs(self.sim_image[i, j, x] - img[i, j, x]) * (simGrad.get() / 100)
|
||||
|
||||
elif self.sim_image[i, j, x] < img[i, j, x]:
|
||||
self.sim_image[i, j, x] = self.sim_image[i, j, x] + abs(img[i, j, x] - self.sim_image[i, j, x]) * (simGrad.get() / 100)
|
||||
|
||||
return self.sim_image
|
||||
|
||||
class AutoScrollbar(tk.Scrollbar):
|
||||
@ -220,8 +193,6 @@ class ScrollFrame:
|
||||
self.canvas.config(height = self.frame.winfo_reqheight())
|
||||
|
||||
|
||||
root = tk.Tk()
|
||||
|
||||
root.title("Projekt Dyschromasie")
|
||||
|
||||
SB = ScrollFrame(root)
|
||||
@ -234,7 +205,6 @@ kanaele = 0
|
||||
sim_pro = tk.IntVar(root)
|
||||
sim_deut = tk.IntVar(root)
|
||||
sim_tri = tk.IntVar(root)
|
||||
simGrad = tk.IntVar(root)
|
||||
|
||||
simulationsGradient = tk.Scale(SB.frame, from_=0, to_=100, variable=simGrad, orient='horizontal')
|
||||
simulationsGradient.grid(column= 0, row = 1, columnspan=10)
|
||||
@ -264,9 +234,8 @@ def browse():
|
||||
|
||||
def simulate():
|
||||
global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri
|
||||
|
||||
if sim_deut.get():
|
||||
d = Deuteranopie(img, rows, cols, kanaele)
|
||||
d = Deuteranopie(img, rows, cols, kanaele, simGrad.get()/100)
|
||||
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
||||
|
||||
T = tk.Text(SB.frame, height=1, width=15)
|
||||
@ -278,7 +247,7 @@ def simulate():
|
||||
sim_pic_deut.Image = conv_SimulationPic_deut
|
||||
sim_pic_deut.grid(columnspan=5)
|
||||
elif sim_tri.get():
|
||||
t = Tritanopie(img, rows, cols, kanaele)
|
||||
t = Tritanopie(img, rows, cols, kanaele, simGrad.get()/100)
|
||||
display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB)
|
||||
|
||||
T = tk.Text(SB.frame, height=1, width=15)
|
||||
@ -290,7 +259,7 @@ def simulate():
|
||||
sim_pic_tri.Image = conv_SimulationPic_tri
|
||||
sim_pic_tri.grid(columnspan=5)
|
||||
elif sim_pro.get():
|
||||
p = Protanopie(img, rows, cols, kanaele)
|
||||
p = Protanopie(img, rows, cols, kanaele, simGrad.get()/100)
|
||||
display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB)
|
||||
|
||||
T = tk.Text(SB.frame, height=1, width=15)
|
||||
|
Loading…
x
Reference in New Issue
Block a user