|
|
|
|
|
|
|
|
import cv2
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
root = tk.Tk()
|
|
|
|
|
|
simGrad = tk.IntVar(root)
|
|
|
|
|
|
|
|
|
class Dyschromasie:
|
|
|
class Dyschromasie:
|
|
|
global simGrad
|
|
|
|
|
|
cb_image = np.array([]).astype('float64')
|
|
|
cb_image = np.array([]).astype('float64')
|
|
|
sim_image = np.array([]).astype('uint8')
|
|
|
sim_image = np.array([]).astype('uint8')
|
|
|
|
|
|
|
|
|
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0):
|
|
|
|
|
|
|
|
|
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0,sim_faktor=0):
|
|
|
self.rows = rows
|
|
|
self.rows = rows
|
|
|
self.cols = cols
|
|
|
self.cols = cols
|
|
|
self.kanaele = kanaele
|
|
|
self.kanaele = kanaele
|
|
|
self.img_mat = img_mat
|
|
|
self.img_mat = img_mat
|
|
|
|
|
|
self.sim_faktor = sim_faktor
|
|
|
|
|
|
|
|
|
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
|
|
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
|
|
[0.15537241, 0.75789446, 0.08670142],
|
|
|
[0.15537241, 0.75789446, 0.08670142],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Protanopie(Dyschromasie):
|
|
|
class Protanopie(Dyschromasie):
|
|
|
sim_mat = np.array([[0, 1.05118294, -0.05116099],
|
|
|
|
|
|
[0, 1, 0],
|
|
|
|
|
|
[0, 0, 1]])
|
|
|
|
|
|
|
|
|
|
|
|
def Simulate(self):
|
|
|
def Simulate(self):
|
|
|
|
|
|
|
|
|
|
|
|
sim_mat = np.array([[(1 - self.sim_faktor), 1.05118294 * self.sim_faktor, -0.05116099 * self.sim_faktor],
|
|
|
|
|
|
[0, 1, 0],
|
|
|
|
|
|
[0, 0, 1]])
|
|
|
|
|
|
|
|
|
# Gammakorrektur durchfuehren
|
|
|
# Gammakorrektur durchfuehren
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
for i in range(self.rows):
|
|
|
for i in range(self.rows):
|
|
|
|
|
|
|
|
|
for i in range(self.rows):
|
|
|
for i in range(self.rows):
|
|
|
for j in range(self.cols):
|
|
|
for j in range(self.cols):
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
|
|
|
|
|
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
|
|
|
|
|
|
for x in range(3):
|
|
|
for x in range(3):
|
|
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
|
|
|
|
|
|
# Anpassung fuer den Slider
|
|
|
|
|
|
if(simGrad.get() != 0):
|
|
|
|
|
|
for i in range(rows):
|
|
|
|
|
|
for j in range(cols):
|
|
|
|
|
|
for x in range(3):
|
|
|
|
|
|
if self.sim_image[i, j, x] > img[i, j, x]:
|
|
|
|
|
|
self.sim_image[i, j, x] = img[i, j, x] + abs(self.sim_image[i, j, x] - img[i, j, x])* (simGrad.get()/100)
|
|
|
|
|
|
|
|
|
|
|
|
elif self.sim_image[i, j, x] < img[i, j, x]:
|
|
|
|
|
|
self.sim_image[i, j, x] = self.sim_image[i, j, x] + abs(img[i, j, x] - self.sim_image[i, j, x])* (simGrad.get()/100)
|
|
|
|
|
|
return self.sim_image
|
|
|
return self.sim_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Deuteranopie(Dyschromasie):
|
|
|
class Deuteranopie(Dyschromasie):
|
|
|
sim_mat = np.array([[1, 0, 0],
|
|
|
|
|
|
[0.9513092, 0, 0.04866992],
|
|
|
|
|
|
[0, 0, 1]])
|
|
|
|
|
|
|
|
|
|
|
|
def Simulate(self):
|
|
|
def Simulate(self):
|
|
|
|
|
|
|
|
|
|
|
|
sim_mat = np.array([[1, 0, 0],
|
|
|
|
|
|
[0.9513092 * self.sim_faktor, (1 - self.sim_faktor), 0.04866992 * self.sim_faktor],
|
|
|
|
|
|
[0, 0, 1]])
|
|
|
|
|
|
|
|
|
# Gammakorrektur durchfuehren
|
|
|
# Gammakorrektur durchfuehren
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
for i in range(self.rows):
|
|
|
for i in range(self.rows):
|
|
|
|
|
|
|
|
|
for i in range(self.rows):
|
|
|
for i in range(self.rows):
|
|
|
for j in range(self.cols):
|
|
|
for j in range(self.cols):
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
|
|
|
|
|
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
|
|
|
|
|
|
for x in range(3):
|
|
|
for x in range(3):
|
|
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
|
|
|
|
|
|
# Anpassung fuer den Slider
|
|
|
|
|
|
if (simGrad.get() != 0):
|
|
|
|
|
|
for i in range(rows):
|
|
|
|
|
|
for j in range(cols):
|
|
|
|
|
|
for x in range(3):
|
|
|
|
|
|
if self.sim_image[i, j, x] > img[i, j, x]:
|
|
|
|
|
|
self.sim_image[i, j, x] = img[i, j, x] + abs(self.sim_image[i, j, x] - img[i, j, x]) * (simGrad.get() / 100)
|
|
|
|
|
|
|
|
|
|
|
|
elif self.sim_image[i, j, x] < img[i, j, x]:
|
|
|
|
|
|
self.sim_image[i, j, x] = self.sim_image[i, j, x] + abs(img[i, j, x] - self.sim_image[i, j, x]) * (simGrad.get() / 100)
|
|
|
|
|
|
|
|
|
|
|
|
return self.sim_image
|
|
|
return self.sim_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Tritanopie(Dyschromasie):
|
|
|
class Tritanopie(Dyschromasie):
|
|
|
sim_mat = np.array([[1, 0, 0],
|
|
|
|
|
|
[0, 1, 0],
|
|
|
|
|
|
[-0.86744736, 1.86727089, 0]])
|
|
|
|
|
|
|
|
|
|
|
|
def Simulate(self):
|
|
|
def Simulate(self):
|
|
|
|
|
|
|
|
|
|
|
|
sim_mat = np.array([[1, 0, 0],
|
|
|
|
|
|
[0, 1, 0],
|
|
|
|
|
|
[-0.86744736 * self.sim_faktor, 1.86727089 * self.sim_faktor, (1 - self.sim_faktor)]])
|
|
|
|
|
|
|
|
|
# Gammakorrektur durchfuehren
|
|
|
# Gammakorrektur durchfuehren
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
for i in range(self.rows):
|
|
|
for i in range(self.rows):
|
|
|
|
|
|
|
|
|
for i in range(self.rows):
|
|
|
for i in range(self.rows):
|
|
|
for j in range(self.cols):
|
|
|
for j in range(self.cols):
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
self.cb_image[i, j] = np.flipud(
|
|
|
self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
|
|
|
|
|
self.T_reversed.dot(sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j])))
|
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
|
|
|
|
|
|
for x in range(3):
|
|
|
for x in range(3):
|
|
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
|
|
|
|
|
|
# Anpassung fuer den Slider
|
|
|
|
|
|
if (simGrad.get() != 0):
|
|
|
|
|
|
for i in range(rows):
|
|
|
|
|
|
for j in range(cols):
|
|
|
|
|
|
for x in range(3):
|
|
|
|
|
|
if self.sim_image[i, j, x] > img[i, j, x]:
|
|
|
|
|
|
self.sim_image[i, j, x] = img[i, j, x] + abs(self.sim_image[i, j, x] - img[i, j, x]) * (simGrad.get() / 100)
|
|
|
|
|
|
|
|
|
|
|
|
elif self.sim_image[i, j, x] < img[i, j, x]:
|
|
|
|
|
|
self.sim_image[i, j, x] = self.sim_image[i, j, x] + abs(img[i, j, x] - self.sim_image[i, j, x]) * (simGrad.get() / 100)
|
|
|
|
|
|
|
|
|
|
|
|
return self.sim_image
|
|
|
return self.sim_image
|
|
|
|
|
|
|
|
|
class AutoScrollbar(tk.Scrollbar):
|
|
|
class AutoScrollbar(tk.Scrollbar):
|
|
|
|
|
|
|
|
|
self.canvas.config(height = self.frame.winfo_reqheight())
|
|
|
self.canvas.config(height = self.frame.winfo_reqheight())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
root = tk.Tk()
|
|
|
|
|
|
|
|
|
|
|
|
root.title("Projekt Dyschromasie")
|
|
|
root.title("Projekt Dyschromasie")
|
|
|
|
|
|
|
|
|
SB = ScrollFrame(root)
|
|
|
SB = ScrollFrame(root)
|
|
|
|
|
|
|
|
|
sim_pro = tk.IntVar(root)
|
|
|
sim_pro = tk.IntVar(root)
|
|
|
sim_deut = tk.IntVar(root)
|
|
|
sim_deut = tk.IntVar(root)
|
|
|
sim_tri = tk.IntVar(root)
|
|
|
sim_tri = tk.IntVar(root)
|
|
|
simGrad = tk.IntVar(root)
|
|
|
|
|
|
|
|
|
|
|
|
simulationsGradient = tk.Scale(SB.frame, from_=0, to_=100, variable=simGrad, orient='horizontal')
|
|
|
simulationsGradient = tk.Scale(SB.frame, from_=0, to_=100, variable=simGrad, orient='horizontal')
|
|
|
simulationsGradient.grid(column= 0, row = 1, columnspan=10)
|
|
|
simulationsGradient.grid(column= 0, row = 1, columnspan=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def simulate():
|
|
|
def simulate():
|
|
|
global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri
|
|
|
global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri
|
|
|
|
|
|
|
|
|
if sim_deut.get():
|
|
|
if sim_deut.get():
|
|
|
d = Deuteranopie(img, rows, cols, kanaele)
|
|
|
|
|
|
|
|
|
d = Deuteranopie(img, rows, cols, kanaele, simGrad.get()/100)
|
|
|
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
|
|
|
|
|
|
sim_pic_deut.Image = conv_SimulationPic_deut
|
|
|
sim_pic_deut.Image = conv_SimulationPic_deut
|
|
|
sim_pic_deut.grid(columnspan=5)
|
|
|
sim_pic_deut.grid(columnspan=5)
|
|
|
elif sim_tri.get():
|
|
|
elif sim_tri.get():
|
|
|
t = Tritanopie(img, rows, cols, kanaele)
|
|
|
|
|
|
|
|
|
t = Tritanopie(img, rows, cols, kanaele, simGrad.get()/100)
|
|
|
display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
|
|
|
|
|
|
sim_pic_tri.Image = conv_SimulationPic_tri
|
|
|
sim_pic_tri.Image = conv_SimulationPic_tri
|
|
|
sim_pic_tri.grid(columnspan=5)
|
|
|
sim_pic_tri.grid(columnspan=5)
|
|
|
elif sim_pro.get():
|
|
|
elif sim_pro.get():
|
|
|
p = Protanopie(img, rows, cols, kanaele)
|
|
|
|
|
|
|
|
|
p = Protanopie(img, rows, cols, kanaele, simGrad.get()/100)
|
|
|
display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB)
|
|
|
|
|
|
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|
|
|
T = tk.Text(SB.frame, height=1, width=15)
|