Browse Source

Erster Daltonizationalgorithmus

master
Max Sponsel 4 years ago
parent
commit
b78f3c2908
2 changed files with 45 additions and 2 deletions
  1. BIN
      Beispielbilder/rot-gruen-schwaeche-test-bild.jpg
  2. 45
    2
      Code/Farbaenderung.py

BIN
Beispielbilder/rot-gruen-schwaeche-test-bild.jpg View File


+ 45
- 2
Code/Farbaenderung.py View File

import numpy as np import numpy as np
import cv2 import cv2
import sys
def createGammaLookup(): def createGammaLookup():
return np.array([removeGammaCorrection(i) for i in np.arange(0, 256)]).astype("float64") return np.array([removeGammaCorrection(i) for i in np.arange(0, 256)]).astype("float64")
return self.sim_image return self.sim_image
script_dir = sys.path[0]
path = script_dir[:-4] + "Beispielbilder\Fall_trees.jpg"
image = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB)
rows, cols, kanaele = image.shape
p = Dyschromasie(image, rows, cols, kanaele, 1, 'p')
simulated_image = p.Simulate()
E = np.copy(simulated_image)
for i in range(rows):
for j in range(cols):
for x in range(3):
E[i, j, x] = abs(int(simulated_image[i, j, x]) - int(image[i, j, x]))
ERR = np.zeros_like(image)
err2mod = np.array([[0,0,0],[0.7,1,0],[0.7,0,1]])
for i in range(rows):
for j in range(cols):
err = E[i,j,:3]
ERR[i,j,:3] = np.dot(err2mod, err)
dtpn = np.copy(image)
for i in range(rows):
for j in range(cols):
for x in range(3):
dtpn[i, j, x] = (int(ERR[i, j, x]) + int(image[i, j, x]))
for i in range(rows):
for j in range(cols):
dtpn[i, j, 0] = max(0, dtpn[i, j, 0])
dtpn[i, j, 0] = min(255, dtpn[i, j, 0])
dtpn[i, j, 1] = max(0, dtpn[i, j, 1])
dtpn[i, j, 1] = min(255, dtpn[i, j, 1])
dtpn[i, j, 2] = max(0, dtpn[i, j, 2])
dtpn[i, j, 2] = min(255, dtpn[i, j, 2])
cv2.imshow('Dalt_Img', cv2.cvtColor(dtpn, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)

Loading…
Cancel
Save