|
|
@@ -4,69 +4,12 @@ import tkinter as tk |
|
|
|
from tkinter import filedialog, messagebox
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
from Farbaenderung import gammaCorrection, reverseGammaCorrection
|
|
|
|
from Farbaenderung import gammaCorrection, reverseGammaCorrection, Dyschromasie
|
|
|
|
from Scrollbar import ScrollFrame
|
|
|
|
|
|
|
|
root = tk.Tk()
|
|
|
|
simGrad = tk.IntVar(root)
|
|
|
|
|
|
|
|
class Dyschromasie:
|
|
|
|
cb_image = np.array([]).astype('float64')
|
|
|
|
sim_image = np.array([]).astype('uint8')
|
|
|
|
|
|
|
|
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0,sim_faktor=0, sim_kind='d'):
|
|
|
|
self.rows = rows
|
|
|
|
self.cols = cols
|
|
|
|
self.kanaele = kanaele
|
|
|
|
self.img_mat = img_mat
|
|
|
|
self.sim_faktor = sim_faktor
|
|
|
|
self.sim_kind = sim_kind
|
|
|
|
|
|
|
|
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
|
|
|
[0.15537241, 0.75789446, 0.08670142],
|
|
|
|
[0.01775239, 0.10944209, 0.87256922]])
|
|
|
|
|
|
|
|
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
|
|
|
|
[-1.1252419, 2.29317094, -0.1678952],
|
|
|
|
[0.02980165, -0.19318073, 1.16364789]])
|
|
|
|
|
|
|
|
def Simulate(self):
|
|
|
|
if self.sim_kind == 'p':
|
|
|
|
sim_mat = np.array([[(1 - self.sim_faktor), 1.05118294 * self.sim_faktor, -0.05116099 * self.sim_faktor],
|
|
|
|
[0, 1, 0],
|
|
|
|
[0, 0, 1]])
|
|
|
|
elif self.sim_kind == 'd':
|
|
|
|
sim_mat = np.array([[1, 0, 0],
|
|
|
|
[0.9513092 * self.sim_faktor, (1 - self.sim_faktor), 0.04866992 * self.sim_faktor],
|
|
|
|
[0, 0, 1]])
|
|
|
|
else:
|
|
|
|
sim_mat = np.array([[1, 0, 0],
|
|
|
|
[0, 1, 0],
|
|
|
|
[-0.86744736 * self.sim_faktor, 1.86727089 * self.sim_faktor, (1 - self.sim_faktor)]])
|
|
|
|
|
|
|
|
# Gammakorrektur durchfuehren
|
|
|
|
self.cb_image = np.copy(self.img_mat).astype('float64')
|
|
|
|
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
for x in range(3):
|
|
|
|
self.cb_image[i, j, x] = gammaCorrection(self.img_mat[i, j, x])
|
|
|
|
|
|
|
|
# Einzelne Pixelwertberechnung
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j])
|
|
|
|
|
|
|
|
self.sim_image = np.copy(self.cb_image)
|
|
|
|
self.sim_image = self.sim_image.astype('uint8')
|
|
|
|
# Rücktransformation der Gammawerte
|
|
|
|
for i in range(self.rows):
|
|
|
|
for j in range(self.cols):
|
|
|
|
for x in range(3):
|
|
|
|
self.sim_image[i, j, x] = reverseGammaCorrection(self.cb_image[i, j, x])
|
|
|
|
|
|
|
|
return self.sim_image
|
|
|
|
|
|
|
|
root.title("Projekt Dyschromasie")
|
|
|
|
|
|
|
|
SB = ScrollFrame(root)
|