Weiter CodeCleanup
This commit is contained in:
parent
30d0e61ca7
commit
d5252ea2be
@ -4,69 +4,12 @@ import tkinter as tk
|
||||
from tkinter import filedialog, messagebox
|
||||
import cv2
|
||||
import numpy as np
|
||||
from Farbaenderung import gammaCorrection, reverseGammaCorrection
|
||||
from Farbaenderung import gammaCorrection, reverseGammaCorrection, Dyschromasie
|
||||
from Scrollbar import ScrollFrame
|
||||
|
||||
root = tk.Tk()
|
||||
simGrad = tk.IntVar(root)
|
||||
|
||||
class Dyschromasie:
|
||||
cb_image = np.array([]).astype('float64')
|
||||
sim_image = np.array([]).astype('uint8')
|
||||
|
||||
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0,sim_faktor=0, sim_kind='d'):
|
||||
self.rows = rows
|
||||
self.cols = cols
|
||||
self.kanaele = kanaele
|
||||
self.img_mat = img_mat
|
||||
self.sim_faktor = sim_faktor
|
||||
self.sim_kind = sim_kind
|
||||
|
||||
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
||||
[0.15537241, 0.75789446, 0.08670142],
|
||||
[0.01775239, 0.10944209, 0.87256922]])
|
||||
|
||||
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
|
||||
[-1.1252419, 2.29317094, -0.1678952],
|
||||
[0.02980165, -0.19318073, 1.16364789]])
|
||||
|
||||
def Simulate(self):
|
||||
if self.sim_kind == 'p':
|
||||
sim_mat = np.array([[(1 - self.sim_faktor), 1.05118294 * self.sim_faktor, -0.05116099 * self.sim_faktor],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
elif self.sim_kind == 'd':
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0.9513092 * self.sim_faktor, (1 - self.sim_faktor), 0.04866992 * self.sim_faktor],
|
||||
[0, 0, 1]])
|
||||
else:
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[-0.86744736 * self.sim_faktor, 1.86727089 * self.sim_faktor, (1 - self.sim_faktor)]])
|
||||
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.cb_image[i, j, x] = gammaCorrection(self.img_mat[i, j, x])
|
||||
|
||||
# Einzelne Pixelwertberechnung
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j])
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
# Rücktransformation der Gammawerte
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
|
||||
return self.sim_image
|
||||
|
||||
root.title("Projekt Dyschromasie")
|
||||
|
||||
SB = ScrollFrame(root)
|
||||
|
@ -1,3 +1,6 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
def gammaCorrection(v):
|
||||
if v <= 0.04045 * 255:
|
||||
return (v / 255) / 12.92
|
||||
@ -12,6 +15,61 @@ def reverseGammaCorrection(v_reverse):
|
||||
return round(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
|
||||
|
||||
|
||||
|
||||
class Dyschromasie:
|
||||
cb_image = np.array([]).astype('float64')
|
||||
sim_image = np.array([]).astype('uint8')
|
||||
|
||||
def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0,sim_faktor=0, sim_kind='d'):
|
||||
self.rows = rows
|
||||
self.cols = cols
|
||||
self.kanaele = kanaele
|
||||
self.img_mat = img_mat
|
||||
self.sim_faktor = sim_faktor
|
||||
self.sim_kind = sim_kind
|
||||
|
||||
T = np.array([[0.31399022, 0.63951294, 0.04649755],
|
||||
[0.15537241, 0.75789446, 0.08670142],
|
||||
[0.01775239, 0.10944209, 0.87256922]])
|
||||
|
||||
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
|
||||
[-1.1252419, 2.29317094, -0.1678952],
|
||||
[0.02980165, -0.19318073, 1.16364789]])
|
||||
|
||||
def Simulate(self):
|
||||
if self.sim_kind == 'p':
|
||||
sim_mat = np.array([[(1 - self.sim_faktor), 1.05118294 * self.sim_faktor, -0.05116099 * self.sim_faktor],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
elif self.sim_kind == 'd':
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0.9513092 * self.sim_faktor, (1 - self.sim_faktor), 0.04866992 * self.sim_faktor],
|
||||
[0, 0, 1]])
|
||||
else:
|
||||
sim_mat = np.array([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[-0.86744736 * self.sim_faktor, 1.86727089 * self.sim_faktor, (1 - self.sim_faktor)]])
|
||||
|
||||
# Gammakorrektur durchfuehren
|
||||
self.cb_image = np.copy(self.img_mat).astype('float64')
|
||||
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.cb_image[i, j, x] = gammaCorrection(self.img_mat[i, j, x])
|
||||
|
||||
# Einzelne Pixelwertberechnung
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
self.cb_image[i, j] = self.T_reversed.dot(sim_mat).dot(self.T).dot(self.cb_image[i, j])
|
||||
|
||||
self.sim_image = np.copy(self.cb_image)
|
||||
self.sim_image = self.sim_image.astype('uint8')
|
||||
# Rücktransformation der Gammawerte
|
||||
for i in range(self.rows):
|
||||
for j in range(self.cols):
|
||||
for x in range(3):
|
||||
self.sim_image[i, j, x] = reverseGammaCorrection(self.cb_image[i, j, x])
|
||||
|
||||
return self.sim_image
|
||||
|
||||
|
||||
|
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user