Compare commits

..

No commits in common. "bb625895a0e4a7a18bf620e9de0e64d67f36ec58" and "24ab0a1f8545b884531a68aa05658b51f251236a" have entirely different histories.

View File

@ -14,42 +14,33 @@ kanaele = image.shape[2] # Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild)
def gammaCorrection(v):
if v <= 0.04045 * 255:
return float(((v / 255) / 12.92))
elif v > 0.04045 * 255:
return float((((v / 255) + 0.055) / 1.055) ** 2.4)
if (v <= 0.04045 * 255):
return ((v / 255) / 12.92)
elif (v > 0.04045 * 255):
return (((v / 255) + 0.055) / 1.055) ** 2.4
else:
print("Ungültiger Wert!!")
return 1
def reverseGammaCorrection(v_reverse):
if v_reverse <= 0.0031308:
return int(255 * (12.92 * v_reverse))
elif v_reverse > 0.0031308:
return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
if (v_reverse <= 0.0031308):
return 255 * (12.92 * v_reverse)
elif (v_reverse > 0.0031308):
return 255 * (1.055 * v_reverse ** 0.41666 - 0.055)
else:
print("Ungültiger Wert!!!")
return 1
cb_image = np.copy(image) #Kopie des Bildarrays
cb_image = cb_image.astype('float64') #Casting des Arrays auf Float
#Korrektur des Gamma Faktors für alle Bildelemente
for i in range(rows):
for j in range(cols):
for x in range(3):
cb_image[i, j, x] = gammaCorrection(float(image[i, j, x]))
'''
0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum
T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen
0.01775239 0.10944209 0.87256922 T*RGB_Farbverktor = LMS_Farbvektor
'''
T = np.array([[0.31399022, 0.63951294, 0.04649755],
[0.15537241, 0.75789446, 0.08670142],
[0.01775239, 0.10944209, 0.87256922]])
T = np.array([[0.31399022,0.63951294,0.04649755],
[0.15537241,0.75789446,0.08670142],
[0.01775239,0.10944209,0.87256922]])
'''
5.47221206 4.6419601 0.16963708 Rücktransformationsmatrix (Inverse von T)
@ -57,12 +48,15 @@ T_reversed = -1.1252419 2.29317094 0.1678952 T_reversed Ü LMS_Farbvek
0.02980165 0.19318073 1.16364789
'''
T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
[-1.1252419, 2.29317094, -0.1678952],
[0.02980165, -0.19318073, 1.16364789]])
T_reversed = np.array([[5.47221206,-4.6419601,0.16963708],
[-1.1252419,2.29317094,-0.1678952],
[0.02980165,-0.19318073,1.16364789]])
# Multiplikation der einzelnen Pixelwerte
# T.dot(image[x][y])
# for i in range(rows): #Durchgehen aller Pixel des Bildes
# for j in range(cols):
# k = image[i,j]
# #Umwandlungsalgorithmus
cv2.namedWindow("Display") # Displaywindow erstellen