Compare commits
No commits in common. "bb625895a0e4a7a18bf620e9de0e64d67f36ec58" and "24ab0a1f8545b884531a68aa05658b51f251236a" have entirely different histories.
bb625895a0
...
24ab0a1f85
@ -14,33 +14,24 @@ kanaele = image.shape[2] # Auslesen der Kanaele (3 fuer RGB, 1 fuer Graubild)
|
|||||||
|
|
||||||
|
|
||||||
def gammaCorrection(v):
|
def gammaCorrection(v):
|
||||||
if v <= 0.04045 * 255:
|
if (v <= 0.04045 * 255):
|
||||||
return float(((v / 255) / 12.92))
|
return ((v / 255) / 12.92)
|
||||||
elif v > 0.04045 * 255:
|
elif (v > 0.04045 * 255):
|
||||||
return float((((v / 255) + 0.055) / 1.055) ** 2.4)
|
return (((v / 255) + 0.055) / 1.055) ** 2.4
|
||||||
else:
|
else:
|
||||||
print("Ungültiger Wert!!")
|
print("Ungültiger Wert!!")
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
|
|
||||||
def reverseGammaCorrection(v_reverse):
|
def reverseGammaCorrection(v_reverse):
|
||||||
if v_reverse <= 0.0031308:
|
if (v_reverse <= 0.0031308):
|
||||||
return int(255 * (12.92 * v_reverse))
|
return 255 * (12.92 * v_reverse)
|
||||||
elif v_reverse > 0.0031308:
|
elif (v_reverse > 0.0031308):
|
||||||
return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055))
|
return 255 * (1.055 * v_reverse ** 0.41666 - 0.055)
|
||||||
else:
|
else:
|
||||||
print("Ungültiger Wert!!!")
|
print("Ungültiger Wert!!!")
|
||||||
return 1
|
return 1
|
||||||
|
|
||||||
|
|
||||||
cb_image = np.copy(image) #Kopie des Bildarrays
|
|
||||||
cb_image = cb_image.astype('float64') #Casting des Arrays auf Float
|
|
||||||
|
|
||||||
#Korrektur des Gamma Faktors für alle Bildelemente
|
|
||||||
for i in range(rows):
|
|
||||||
for j in range(cols):
|
|
||||||
for x in range(3):
|
|
||||||
cb_image[i, j, x] = gammaCorrection(float(image[i, j, x]))
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum
|
0.31399022 0.63951294 0.04649755 Transformationsmatrix zum Konvertieren vom linearen RGB zum LMS Farbraum
|
||||||
T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen
|
T = 0.15537241 0.75789446 0.08670142 Multiplikation aus Brucelindbloom und Hunt-Pointer-Estevez Matrixen
|
||||||
@ -61,8 +52,11 @@ T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708],
|
|||||||
[-1.1252419,2.29317094,-0.1678952],
|
[-1.1252419,2.29317094,-0.1678952],
|
||||||
[0.02980165,-0.19318073,1.16364789]])
|
[0.02980165,-0.19318073,1.16364789]])
|
||||||
|
|
||||||
# Multiplikation der einzelnen Pixelwerte
|
|
||||||
# T.dot(image[x][y])
|
# for i in range(rows): #Durchgehen aller Pixel des Bildes
|
||||||
|
# for j in range(cols):
|
||||||
|
# k = image[i,j]
|
||||||
|
# #Umwandlungsalgorithmus
|
||||||
|
|
||||||
|
|
||||||
cv2.namedWindow("Display") # Displaywindow erstellen
|
cv2.namedWindow("Display") # Displaywindow erstellen
|
||||||
|
Loading…
x
Reference in New Issue
Block a user