from PIL import Image, ImageTk import PIL import tkinter as tk from tkinter import filedialog, messagebox import cv2 import numpy as np class Dyschromasie: cb_image = np.array([]).astype('float64') sim_image = np.array([]).astype('uint8') def __init__(self, img_mat=np.array([]), rows=0, cols=0, kanaele=0): self.rows = rows self.cols = cols self.kanaele = kanaele self.img_mat = img_mat T = np.array([[0.31399022, 0.63951294, 0.04649755], [0.15537241, 0.75789446, 0.08670142], [0.01775239, 0.10944209, 0.87256922]]) T_reversed = np.array([[5.47221206, -4.6419601, 0.16963708], [-1.1252419, 2.29317094, -0.1678952], [0.02980165, -0.19318073, 1.16364789]]) def gammaCorrection(self, v): if v <= 0.04045 * 255: return float(((v / 255) / 12.92)) elif v > 0.04045 * 255: return float((((v / 255) + 0.055) / 1.055) ** 2.4) def reverseGammaCorrection(self, v_reverse): if v_reverse <= 0.0031308: return int(255 * (12.92 * v_reverse)) elif v_reverse > 0.0031308: return int(255 * (1.055 * v_reverse ** 0.41666 - 0.055)) class Protanopie(Dyschromasie): sim_mat = np.array([[0, 1.05118294, -0.05116099], [0, 1, 0], [0, 0, 1]]) def Simulate(self): # Gammakorrektur durchfuehren self.cb_image = np.copy(self.img_mat).astype('float64') for i in range(self.rows): for j in range(self.cols): for x in range(3): self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x]) # Einzelne Pixelwertberechnung for i in range(self.rows): for j in range(self.cols): self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j]))) self.sim_image = np.copy(self.cb_image) self.sim_image = self.sim_image.astype('uint8') # Rücktransformation der Gammawerte for i in range(self.rows): for j in range(self.cols): for x in range(3): self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x]) return self.sim_image class Deuteranopie(Dyschromasie): sim_mat = np.array([[1, 0, 0], [0.9513092, 0, 0.04866992], [0, 0, 1]]) def Simulate(self): # Gammakorrektur durchfuehren self.cb_image = np.copy(self.img_mat).astype('float64') for i in range(self.rows): for j in range(self.cols): for x in range(3): self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x]) # Einzelne Pixelwertberechnung for i in range(self.rows): for j in range(self.cols): self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j]))) self.sim_image = np.copy(self.cb_image) self.sim_image = self.sim_image.astype('uint8') # Rücktransformation der Gammawerte for i in range(self.rows): for j in range(self.cols): for x in range(3): self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x]) return self.sim_image class Tritanopie(Dyschromasie): sim_mat = np.array([[1, 0, 0], [0, 1, 0], [-0.86744736, 1.86727089, 0]]) def Simulate(self): # Gammakorrektur durchfuehren self.cb_image = np.copy(self.img_mat).astype('float64') for i in range(self.rows): for j in range(self.cols): for x in range(3): self.cb_image[i, j, x] = self.gammaCorrection(self.img_mat[i, j, x]) # Einzelne Pixelwertberechnung for i in range(self.rows): for j in range(self.cols): self.cb_image[i, j] = np.flipud(self.T_reversed.dot(self.sim_mat).dot(self.T).dot(np.flipud(self.cb_image[i, j]))) self.sim_image = np.copy(self.cb_image) self.sim_image = self.sim_image.astype('uint8') # Rücktransformation der Gammawerte for i in range(self.rows): for j in range(self.cols): for x in range(3): self.sim_image[i, j, x] = self.reverseGammaCorrection(self.cb_image[i, j, x]) return self.sim_image root = tk.Tk() root.title("Projekt Dyschromasie") img = np.array([]) rows = 0 cols = 0 kanaele = 0 sim_pro = tk.IntVar(root) sim_deut = tk.IntVar(root) sim_tri = tk.IntVar(root) def browse(): # Auswahl des FilePaths try: path = tk.filedialog.askopenfilename(filetypes=[("Image File", '.jpg')]) im = Image.open(path) except: tk.messagebox.showerror(title='Datenfehler', message='Kein Bild gefunden/ausgewählt') global simulateButton if len(path) > 0: simulateButton.config(state='active') # Anzeigen des Bildes tkimage = ImageTk.PhotoImage(im) myvar = tk.Label(root, image=tkimage) myvar.image = tkimage myvar.grid(columnspan=5) # Einspeichern der Path-Informationen global img, rows, cols, kanaele img = cv2.imread(path) rows, cols, kanaele = img.shape def simulate(): global img, rows, cols, kanaele, sim_pro, sim_deut, sim_tri if sim_deut.get(): d = Deuteranopie(img, rows, cols, kanaele) display_array_deut = cv2.cvtColor(np.copy(d.Simulate()), cv2.COLOR_BGR2RGB) T = tk.Text(root,height=1,width=15) T.grid(columnspan=5) T.insert('current',"Deutranopie:") conv_SimulationPic_deut = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_deut)) sim_pic_deut = tk.Label(root, image=conv_SimulationPic_deut) sim_pic_deut.Image = conv_SimulationPic_deut sim_pic_deut.grid(columnspan=5) elif sim_tri.get(): t = Tritanopie(img, rows, cols, kanaele) display_array_tri = cv2.cvtColor(np.copy(t.Simulate()), cv2.COLOR_BGR2RGB) T = tk.Text(root, height=1, width=15) T.grid(columnspan=5) T.insert('current', "Tritanopie:") conv_SimulationPic_tri = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_tri)) sim_pic_tri = tk.Label(root, image=conv_SimulationPic_tri) sim_pic_tri.Image = conv_SimulationPic_tri sim_pic_tri.grid(columnspan=5) elif sim_pro.get(): p = Protanopie(img, rows, cols, kanaele) display_array_pro = cv2.cvtColor(np.copy(p.Simulate()), cv2.COLOR_BGR2RGB) T = tk.Text(root, height=1, width=15) T.grid(columnspan=5) T.insert('current', "Protanopie:") conv_SimulationPic_pro = ImageTk.PhotoImage(image=PIL.Image.fromarray(display_array_pro)) sim_pic_pro = tk.Label(root, image=conv_SimulationPic_pro) sim_pic_pro.Image = conv_SimulationPic_pro sim_pic_pro.grid(columnspan=5) btn = tk.Button(root, text="Browse", width=25, command=browse, bg='light blue') btn.grid(column = 0, row = 0,columnspan=2) simulateButton = tk.Button(root, text="Simulate", width=25, command=simulate, bg='light blue') simulateButton.grid(column = 1, row = 0,columnspan=2) simulateButton.config(state='disabled') checkButton_p = tk.Checkbutton(root, text="Protanop", variable=sim_pro, onvalue=1, offvalue=0, height=5, width=20) checkButton_d = tk.Checkbutton(root, text="Deutanop", variable=sim_deut, onvalue=1, offvalue=0, height=5, width=20) checkButton_t = tk.Checkbutton(root, text="Tritanop", variable=sim_tri, onvalue=1, offvalue=0, height=5, width=20) checkButton_p.grid(column = 0, row = 1) checkButton_d.grid(column = 1, row = 1) checkButton_t.grid(column = 2, row = 1) root.mainloop()