signal next_task_state : work.task.State; | signal next_task_state : work.task.State; | ||||
signal index : integer range 0 to work.task.STREAM_LEN; | signal index : integer range 0 to work.task.STREAM_LEN; | ||||
--Signale anlegen: | |||||
signal data_valid_intern : std_logic; --um skalieren zu gehen | |||||
--signal angle_intern : signed(31 downto 0); | |||||
--signal busy_intern : std_logic; | |||||
--signal result_valid_intern : std_logic; | |||||
--signal sine_intern : signed(31 downto 0); | |||||
--State Machine anlegen: | |||||
type CalcState is( | |||||
CALC_IDLE, | |||||
CALC_RANDOMISIEREN,--2) neuen Randomwert berechnen | |||||
--(dauert einige Takte) | |||||
CALC_SKALIEREN,--3) den berechneten Wert skalieren | |||||
CALC_IN_FIFO_ABSPEICHERN); --4) im FIFO abspeichern | |||||
signal current_calc_state : CalcState; | |||||
signal next_calc_state : CalcState; | |||||
begin | begin | ||||
--IP-Core instanzieren und entsprechende Signale verbinden: | |||||
task_state_transitions : process ( current_task_state, task_start, index ) is | task_state_transitions : process ( current_task_state, task_start, index ) is | ||||
begin | begin | ||||
next_task_state <= current_task_state; | next_task_state <= current_task_state; | ||||
end case; | end case; | ||||
end process task_state_transitions; | end process task_state_transitions; | ||||
--ZUSTANDSMASCHINE: | |||||
calc_state_transitions : process (all) is | |||||
begin | |||||
next_calc_state <= current_calc_state; | |||||
case current_calc_state is | |||||
when CALC_IDLE => | |||||
if(current_task_state = work.task.TASK_RUNNING) then | |||||
next_calc_state <= CALC_RANDOMISIEREN; | |||||
end if; | |||||
when CALC_RANDOMISIEREN => | |||||
--if(result_valid_intern = '1' and busy_intern = '0') then--busy_intern = '0' | |||||
if(data_valid_intern = '1') then | |||||
next_calc_state <= CALC_SKALIEREN; | |||||
end if; | |||||
when CALC_SKALIEREN => | |||||
next_calc_state <= CALC_IN_FIFO_ABSPEICHERN; | |||||
when CALC_IN_FIFO_ABSPEICHERN => | |||||
next_calc_state <= CALC_RANDOMISIEREN; | |||||
if(index = 1024) then | |||||
next_calc_state <= CALC_IDLE; | |||||
end if; | |||||
end case; | |||||
end process calc_state_transitions; | |||||
sync : process ( clk, reset ) is | sync : process ( clk, reset ) is | ||||
--VARIABLEN: | |||||
VARIABLE randomisiert : signed ( 31 downto 0 ); | |||||
VARIABLE scaled : signed ( 31 downto 0 ); | |||||
random_number_word : std_logic_vector(31 downto 0); | |||||
variable mask_bit_0 : std_logic_vector(31 downto 0); | |||||
variable mask_bit_1 : std_logic_vector(31 downto 0); | |||||
variable mask_bit_21 : std_logic_vector(31 downto 0); | |||||
variable mask_bit_31 : std_logic_vector(31 downto 0); | |||||
variable xor_result : std_logic_vector(0 downto 0); | |||||
variable shifted : std_logic_vector(31 downto 0); | |||||
variable exponent : std_logic_vector(7 downto 0); | |||||
variable shifted_modified : std_logic_vector(31 downto 0); | |||||
variable shifted_exponent : std_logic_vector(31 downto 0); | |||||
variable shifted_modifiziert : std_logic_vector(31 downto 0); | |||||
begin | begin | ||||
if ( reset = '1' ) then | if ( reset = '1' ) then | ||||
current_task_state <= work.task.TASK_IDLE; | current_task_state <= work.task.TASK_IDLE; | ||||
index <= 0; | index <= 0; | ||||
--START VALUES: | |||||
randomisiert := (others => '0'); | |||||
data_valid_intern <= '0'; | |||||
signal_write <= '0'; | |||||
signal_writedata <= ( others => '0' ); | |||||
elsif ( rising_edge( clk ) ) then | elsif ( rising_edge( clk ) ) then | ||||
current_task_state <= next_task_state; | current_task_state <= next_task_state; | ||||
case next_task_state is | case next_task_state is | ||||
index <= 0; | index <= 0; | ||||
signal_write <= '0'; | signal_write <= '0'; | ||||
end case; | end case; | ||||
--ZUSTANDSMACHINE LOGIK: | |||||
--A: | |||||
current_calc_state <= next_calc_state; | |||||
data_valid_intern <= '0'; | |||||
signal_write <= '0'; | |||||
case next_calc_state is | |||||
when CALC_IDLE => | |||||
--angle_intern <= (others => '0'); | |||||
index <= 0; | |||||
when CALC_RANDOMISIEREN => | |||||
randomisiert := 5; | |||||
if (index == 0) then | |||||
random_number_word := seed; | |||||
end if; | |||||
-- Bits extrahieren und XOR durchführen | |||||
bit_0 := random_number_word(0) and mask_bit_0(0); | |||||
bit_1 := random_number_word(1) and mask_bit_1(1); | |||||
bit_21 := random_number_word(21) and mask_bit_21(21); | |||||
bit_31 := random_number_word(31) and mask_bit_31(31); | |||||
xor_result := bit_0 xor bit_1 xor bit_21 xor bit_31; | |||||
-- Shift um 1 nach rechts | |||||
shifted := random_number_word(30 downto 0) & '0'; | |||||
shifted(31) := xor_result(0); -- XOR-Ergebnis an das MSB (Bit 31) setzen | |||||
-- Ergebnis ausgeben | |||||
shifted_result <= shifted; | |||||
data_valid_intern <= '1'; | |||||
when CALC_SKALIEREN => | |||||
--if(result_valid_intern = '1') then | |||||
scaled := randomisiert; | |||||
--scaled := 6; | |||||
--randomisiert(30 downto 23) := randomisiert(30 downto 23) + ( signed(amplitude(30 downto 23)) - 127); | |||||
--end if; | |||||
-- Exponent extrahieren | |||||
exponent := shifted_result(30 downto 23); | |||||
-- Überprüfen, ob das 7. Bit des Exponenten gesetzt ist | |||||
if (exponent(7) = '1') then | |||||
exponent := exponent and "10000001"; | |||||
else | |||||
exponent := exponent or "01111100"; | |||||
end if; | |||||
-- Verschiebung vorbereiten | |||||
shifted_modified := shifted_result; | |||||
shifted_exponent := ('0' & exponent) & (others => '0'); | |||||
-- Verschiedene Teile kombinieren | |||||
shifted_modifiziert := shifted_modified and x"807FFFFF"; | |||||
shifted_modifiziert := shifted_modifiziert or shifted_exponent; | |||||
-- Ergebnis ausgeben | |||||
scaled_modified_result <= shifted_modifiziert; | |||||
when CALC_IN_FIFO_ABSPEICHERN => | |||||
if(index > 1) then | |||||
signal_writedata <= std_logic_vector(scaled); | |||||
end if; | |||||
signal_write <= '1'; | |||||
index <= index + 1; | |||||
end case; | |||||
--E | |||||
end if; | end if; | ||||
end process sync; | end process sync; | ||||
task_state <= current_task_state; | task_state <= current_task_state; | ||||
end architecture rtl; | end architecture rtl; | ||||
signal current_task_state : work.task.State; | signal current_task_state : work.task.State; | ||||
signal next_task_state : work.task.State; | signal next_task_state : work.task.State; | ||||
signal index : integer range 0 to work.task.STREAM_LEN; | |||||
signal index : integer range 1 to 1025; | |||||
--Signale anlegen: | |||||
signal data_valid_intern : std_logic; | |||||
signal angle_intern : signed(31 downto 0); | |||||
signal busy_intern : std_logic; | |||||
signal result_valid_intern : std_logic; | |||||
signal sine_intern : signed(31 downto 0); | |||||
signal count : INTEGER RANGE 1 TO 1025; | |||||
type CalcState is( | |||||
CALC_IDLE, | |||||
CALC_ZUWEISEN,--1) dem IP-Core einen neuen angle Wert zuführen | |||||
CALC_WARTEN,--2) warten bis dieser einen neuen Sinuswert berechnet hat | |||||
--(dauert einige Takte - Hinweis result_valid und busy Signale des IP-Cores) | |||||
CALC_SKALIEREN,--3) den berechneten Wert skalieren | |||||
CALC_IN_FIFO_ABSPEICHERN); --4) im FIFO abspeichern | |||||
signal current_calc_state : CalcState; | |||||
signal next_calc_state : CalcState; | |||||
begin | begin | ||||
--IP-Core instanzieren und entsprechende Signale verbinden: | |||||
u_float_sine: entity work.float_sine | |||||
generic map ( | |||||
ITERATIONS => 8 | |||||
) | |||||
port map ( | |||||
clk => clk, | |||||
reset => reset, | |||||
data_valid => data_valid_intern, | |||||
angle => angle_intern, | |||||
busy => busy_intern, | |||||
result_valid => result_valid_intern, | |||||
sine => sine_intern | |||||
); | |||||
task_state_transitions : process ( current_task_state, task_start, index ) is | task_state_transitions : process ( current_task_state, task_start, index ) is | ||||
begin | begin | ||||
next_task_state <= current_task_state; | next_task_state <= current_task_state; | ||||
next_task_state <= work.task.TASK_RUNNING; | next_task_state <= work.task.TASK_RUNNING; | ||||
end if; | end if; | ||||
when work.task.TASK_RUNNING => | when work.task.TASK_RUNNING => | ||||
if ( index = work.task.STREAM_LEN - 1 ) then | |||||
if ( index = work.task.STREAM_LEN ) then | |||||
next_task_state <= work.task.TASK_DONE; | next_task_state <= work.task.TASK_DONE; | ||||
end if; | end if; | ||||
when work.task.TASK_DONE => | when work.task.TASK_DONE => | ||||
end case; | end case; | ||||
end process task_state_transitions; | end process task_state_transitions; | ||||
calc_state_transitions : process (all) is | |||||
begin | |||||
next_calc_state <= current_calc_state; | |||||
case current_calc_state is | |||||
when CALC_IDLE => | |||||
if(current_task_state = work.task.TASK_RUNNING) then | |||||
next_calc_state <= CALC_ZUWEISEN; | |||||
end if; | |||||
when CALC_ZUWEISEN => | |||||
next_calc_state <= CALC_WARTEN; | |||||
when CALC_WARTEN => | |||||
if(result_valid_intern = '1' and busy_intern = '0') then--busy_intern = '0' | |||||
next_calc_state <= CALC_SKALIEREN; | |||||
end if; | |||||
when CALC_SKALIEREN => | |||||
next_calc_state <= CALC_IN_FIFO_ABSPEICHERN; | |||||
when CALC_IN_FIFO_ABSPEICHERN => | |||||
next_calc_state <= CALC_ZUWEISEN; | |||||
if(index = 1024) then | |||||
next_calc_state <= CALC_IDLE; | |||||
end if; | |||||
end case; | |||||
end process calc_state_transitions; | |||||
sync : process ( clk, reset ) is | sync : process ( clk, reset ) is | ||||
VARIABLE sine_scaled : signed ( 31 downto 0 ); | |||||
begin | begin | ||||
if ( reset = '1' ) then | if ( reset = '1' ) then | ||||
current_task_state <= work.task.TASK_IDLE; | current_task_state <= work.task.TASK_IDLE; | ||||
index <= 0; | |||||
index <= 1; | |||||
count <= 1; | |||||
sine_scaled := (others => '0'); | |||||
data_valid_intern <= '0'; | |||||
signal_write <= '0'; | |||||
signal_writedata <= ( others => '0' ); | |||||
elsif ( rising_edge( clk ) ) then | elsif ( rising_edge( clk ) ) then | ||||
current_task_state <= next_task_state; | current_task_state <= next_task_state; | ||||
case next_task_state is | case next_task_state is | ||||
when work.task.TASK_IDLE => | when work.task.TASK_IDLE => | ||||
index <= 0; | |||||
signal_write <= '0'; | |||||
when work.task.TASK_RUNNING => | when work.task.TASK_RUNNING => | ||||
index <= index + 1; | |||||
signal_write <= '1'; | |||||
signal_writedata <= ( others => '0' ); | |||||
when work.task.TASK_DONE => | when work.task.TASK_DONE => | ||||
index <= 0; | |||||
signal_write <= '0'; | |||||
end case; | end case; | ||||
--A: | |||||
current_calc_state <= next_calc_state; | |||||
data_valid_intern <= '0'; | |||||
signal_write <= '0'; | |||||
case next_calc_state is | |||||
when CALC_IDLE => | |||||
angle_intern <= (others => '0'); | |||||
count <= 1; | |||||
when CALC_ZUWEISEN => | |||||
--if(index > 1) then | |||||
angle_intern <= angle_intern + signed(step_size); | |||||
--end if; | |||||
data_valid_intern <= '1'; | |||||
when CALC_WARTEN => | |||||
when CALC_SKALIEREN => | |||||
--if(result_valid_intern = '1') then | |||||
sine_scaled := sine_intern; | |||||
sine_scaled(30 downto 23) := sine_scaled(30 downto 23) + ( signed(amplitude(30 downto 23)) - 127); | |||||
--end if; | |||||
when CALC_IN_FIFO_ABSPEICHERN => | |||||
if(index > 1) then | |||||
signal_writedata <= std_logic_vector(sine_scaled); | |||||
end if; | |||||
signal_write <= '1'; | |||||
index <= index + 1; | |||||
count <= count + 1; | |||||
end case; | |||||
--E | |||||
end if; | end if; | ||||
end process sync; | end process sync; | ||||
#include "system/data_channel.h" | #include "system/data_channel.h" | ||||
#include "system/float_word.h" | #include "system/float_word.h" | ||||
int task_rand_run( void * task ) { | |||||
#include <stdio.h> | |||||
// TODO | |||||
int task_rand_run( void * data ) | |||||
{ | |||||
return 0; | |||||
rand_config * task = ( rand_config * ) data; | |||||
uint32_t data_channel_base = task->base.sink; | |||||
float seed = task->seed; //1.3 | |||||
float abs_min = task->abs_min; //0.125 | |||||
float abs_max = task->abs_max; //9.0 | |||||
float_word random_number; | |||||
random_number.value = seed; | |||||
uint32_t mask_bit_0 = 0x1; | |||||
uint32_t mask_bit_1 = 0x2; | |||||
uint32_t mask_bit_21 = 0x200000; | |||||
uint32_t mask_bit_31 = 0x80000000; | |||||
uint32_t exponent = 0; | |||||
uint32_t shifted_exponent = 0; | |||||
uint32_t shifted = 0; | |||||
uint32_t shifted_modifiziert = 0; | |||||
data_channel_clear( data_channel_base ); | |||||
for(uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) | |||||
{ | |||||
//Bits extrahieren: | |||||
uint32_t bit_0 = (random_number.word & mask_bit_0) >> 0; | |||||
uint32_t bit_1 = (random_number.word & mask_bit_1) >> 1; | |||||
uint32_t bit_21 = (random_number.word & mask_bit_21) >> 21; | |||||
uint32_t bit_31 = (random_number.word & mask_bit_31) >> 31; | |||||
//XOR: | |||||
uint32_t xor_result = bit_0 ^ bit_1 ^ bit_21 ^ bit_31; | |||||
//Shifted: | |||||
shifted = random_number.word >> 1; | |||||
//shifted &= ~(0x80000000); | |||||
shifted |= (xor_result << 31); | |||||
printf("%08x %08x %d \n", random_number.word, shifted, xor_result); | |||||
//Skalierung: | |||||
#if 1 | |||||
exponent = (shifted >> 23) & 0xFF; | |||||
if(exponent & (1 << 7)){ | |||||
exponent &= (0b10000001); | |||||
}else{ | |||||
exponent |= (0b01111100); | |||||
} | |||||
shifted_modifiziert = shifted; | |||||
shifted_exponent = exponent << 23; | |||||
shifted_modifiziert &= 0x807FFFFF; | |||||
shifted_modifiziert |= shifted_exponent; | |||||
#endif | |||||
random_number.word = shifted_modifiziert; | |||||
data_channel_write( data_channel_base, random_number.word ); | |||||
random_number.word = shifted; | |||||
} | |||||
return 0; | |||||
} | } | ||||
#include "system/data_channel.h" | #include "system/data_channel.h" | ||||
#include "system/float_word.h" | #include "system/float_word.h" | ||||
#include <math.h> | |||||
int task_sine_run( void * data ) { | int task_sine_run( void * data ) { | ||||
sine_config * task = ( sine_config * ) data; | |||||
uint32_t data_channel_base = task->base.sink; | |||||
uint32_t samples_per_periode = task->samples_per_periode; | |||||
float phase = task->phase; | |||||
float amplitude = task->amplitude; | |||||
data_channel_clear( data_channel_base ); | |||||
#if 0 | |||||
for (uint32_t i = 0; i < (DATA_CHANNEL_DEPTH/samples_per_periode); ++i) | |||||
{ | |||||
for(uint32_t j = 0; j < (samples_per_periode); ++j) | |||||
{ | |||||
float_word res; | |||||
res.value = amplitude * sin((2.0*M_PI/samples_per_periode) * j + phase); | |||||
data_channel_write( data_channel_base, res.word ); | |||||
} | |||||
} | |||||
#endif | |||||
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) | |||||
{ | |||||
float_word res; | |||||
res.value = amplitude * sin((2.0*M_PI/samples_per_periode) * i + phase); | |||||
data_channel_write( data_channel_base, res.word ); | |||||
} | |||||
// TODO | |||||
return 0; | |||||
return 0; | |||||
} | } |