Browse Source

SYSTEMENTWURF PR 1

master
urbaniakdo78593 10 months ago
parent
commit
b57abbe1ac

+ 181
- 0
hardware/signal_processing/rand.vhd View File

signal next_task_state : work.task.State; signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN; signal index : integer range 0 to work.task.STREAM_LEN;




--Signale anlegen:
signal data_valid_intern : std_logic; --um skalieren zu gehen
--signal angle_intern : signed(31 downto 0);
--signal busy_intern : std_logic;
--signal result_valid_intern : std_logic;
--signal sine_intern : signed(31 downto 0);



--State Machine anlegen:
type CalcState is(
CALC_IDLE,
CALC_RANDOMISIEREN,--2) neuen Randomwert berechnen
--(dauert einige Takte)
CALC_SKALIEREN,--3) den berechneten Wert skalieren
CALC_IN_FIFO_ABSPEICHERN); --4) im FIFO abspeichern

signal current_calc_state : CalcState;
signal next_calc_state : CalcState;


begin begin


--IP-Core instanzieren und entsprechende Signale verbinden:



task_state_transitions : process ( current_task_state, task_start, index ) is task_state_transitions : process ( current_task_state, task_start, index ) is
begin begin
next_task_state <= current_task_state; next_task_state <= current_task_state;
end case; end case;
end process task_state_transitions; end process task_state_transitions;




--ZUSTANDSMASCHINE:
calc_state_transitions : process (all) is
begin
next_calc_state <= current_calc_state;
case current_calc_state is
when CALC_IDLE =>
if(current_task_state = work.task.TASK_RUNNING) then
next_calc_state <= CALC_RANDOMISIEREN;
end if;
when CALC_RANDOMISIEREN =>
--if(result_valid_intern = '1' and busy_intern = '0') then--busy_intern = '0'
if(data_valid_intern = '1') then
next_calc_state <= CALC_SKALIEREN;
end if;
when CALC_SKALIEREN =>
next_calc_state <= CALC_IN_FIFO_ABSPEICHERN;
when CALC_IN_FIFO_ABSPEICHERN =>
next_calc_state <= CALC_RANDOMISIEREN;

if(index = 1024) then
next_calc_state <= CALC_IDLE;
end if;
end case;
end process calc_state_transitions;





sync : process ( clk, reset ) is sync : process ( clk, reset ) is

--VARIABLEN:
VARIABLE randomisiert : signed ( 31 downto 0 );
VARIABLE scaled : signed ( 31 downto 0 );

random_number_word : std_logic_vector(31 downto 0);
variable mask_bit_0 : std_logic_vector(31 downto 0);
variable mask_bit_1 : std_logic_vector(31 downto 0);
variable mask_bit_21 : std_logic_vector(31 downto 0);
variable mask_bit_31 : std_logic_vector(31 downto 0);
variable xor_result : std_logic_vector(0 downto 0);
variable shifted : std_logic_vector(31 downto 0);

variable exponent : std_logic_vector(7 downto 0);
variable shifted_modified : std_logic_vector(31 downto 0);
variable shifted_exponent : std_logic_vector(31 downto 0);
variable shifted_modifiziert : std_logic_vector(31 downto 0);


begin begin
if ( reset = '1' ) then if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE; current_task_state <= work.task.TASK_IDLE;
index <= 0; index <= 0;

--START VALUES:
randomisiert := (others => '0');
data_valid_intern <= '0';
signal_write <= '0';
signal_writedata <= ( others => '0' );


elsif ( rising_edge( clk ) ) then elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state; current_task_state <= next_task_state;
case next_task_state is case next_task_state is
index <= 0; index <= 0;
signal_write <= '0'; signal_write <= '0';
end case; end case;



--ZUSTANDSMACHINE LOGIK:
--A:
current_calc_state <= next_calc_state;
data_valid_intern <= '0';
signal_write <= '0';
case next_calc_state is
when CALC_IDLE =>
--angle_intern <= (others => '0');
index <= 0;
when CALC_RANDOMISIEREN =>

randomisiert := 5;

if (index == 0) then
random_number_word := seed;
end if;

-- Bits extrahieren und XOR durchführen
bit_0 := random_number_word(0) and mask_bit_0(0);
bit_1 := random_number_word(1) and mask_bit_1(1);
bit_21 := random_number_word(21) and mask_bit_21(21);
bit_31 := random_number_word(31) and mask_bit_31(31);

xor_result := bit_0 xor bit_1 xor bit_21 xor bit_31;

-- Shift um 1 nach rechts
shifted := random_number_word(30 downto 0) & '0';
shifted(31) := xor_result(0); -- XOR-Ergebnis an das MSB (Bit 31) setzen

-- Ergebnis ausgeben
shifted_result <= shifted;

data_valid_intern <= '1';
when CALC_SKALIEREN =>
--if(result_valid_intern = '1') then
scaled := randomisiert;
--scaled := 6;
--randomisiert(30 downto 23) := randomisiert(30 downto 23) + ( signed(amplitude(30 downto 23)) - 127);
--end if;



-- Exponent extrahieren
exponent := shifted_result(30 downto 23);
-- Überprüfen, ob das 7. Bit des Exponenten gesetzt ist
if (exponent(7) = '1') then
exponent := exponent and "10000001";
else
exponent := exponent or "01111100";
end if;

-- Verschiebung vorbereiten
shifted_modified := shifted_result;
shifted_exponent := ('0' & exponent) & (others => '0');
-- Verschiedene Teile kombinieren
shifted_modifiziert := shifted_modified and x"807FFFFF";
shifted_modifiziert := shifted_modifiziert or shifted_exponent;

-- Ergebnis ausgeben
scaled_modified_result <= shifted_modifiziert;




when CALC_IN_FIFO_ABSPEICHERN =>

if(index > 1) then
signal_writedata <= std_logic_vector(scaled);
end if;

signal_write <= '1';

index <= index + 1;
end case;
--E




end if; end if;
end process sync; end process sync;


task_state <= current_task_state; task_state <= current_task_state;


end architecture rtl; end architecture rtl;









+ 112
- 10
hardware/signal_processing/sine.vhd View File



signal current_task_state : work.task.State; signal current_task_state : work.task.State;
signal next_task_state : work.task.State; signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
signal index : integer range 1 to 1025;

--Signale anlegen:
signal data_valid_intern : std_logic;
signal angle_intern : signed(31 downto 0);
signal busy_intern : std_logic;
signal result_valid_intern : std_logic;
signal sine_intern : signed(31 downto 0);
signal count : INTEGER RANGE 1 TO 1025;



type CalcState is(
CALC_IDLE,
CALC_ZUWEISEN,--1) dem IP-Core einen neuen angle Wert zuführen
CALC_WARTEN,--2) warten bis dieser einen neuen Sinuswert berechnet hat
--(dauert einige Takte - Hinweis result_valid und busy Signale des IP-Cores)
CALC_SKALIEREN,--3) den berechneten Wert skalieren
CALC_IN_FIFO_ABSPEICHERN); --4) im FIFO abspeichern

signal current_calc_state : CalcState;
signal next_calc_state : CalcState;



begin begin

--IP-Core instanzieren und entsprechende Signale verbinden:
u_float_sine: entity work.float_sine
generic map (
ITERATIONS => 8
)
port map (
clk => clk,
reset => reset,
data_valid => data_valid_intern,
angle => angle_intern,
busy => busy_intern,
result_valid => result_valid_intern,
sine => sine_intern
);

task_state_transitions : process ( current_task_state, task_start, index ) is task_state_transitions : process ( current_task_state, task_start, index ) is
begin begin
next_task_state <= current_task_state; next_task_state <= current_task_state;
next_task_state <= work.task.TASK_RUNNING; next_task_state <= work.task.TASK_RUNNING;
end if; end if;
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
if ( index = work.task.STREAM_LEN ) then
next_task_state <= work.task.TASK_DONE; next_task_state <= work.task.TASK_DONE;
end if; end if;
when work.task.TASK_DONE => when work.task.TASK_DONE =>
end case; end case;
end process task_state_transitions; end process task_state_transitions;



calc_state_transitions : process (all) is
begin
next_calc_state <= current_calc_state;
case current_calc_state is
when CALC_IDLE =>
if(current_task_state = work.task.TASK_RUNNING) then
next_calc_state <= CALC_ZUWEISEN;
end if;
when CALC_ZUWEISEN =>
next_calc_state <= CALC_WARTEN;
when CALC_WARTEN =>
if(result_valid_intern = '1' and busy_intern = '0') then--busy_intern = '0'
next_calc_state <= CALC_SKALIEREN;
end if;
when CALC_SKALIEREN =>
next_calc_state <= CALC_IN_FIFO_ABSPEICHERN;
when CALC_IN_FIFO_ABSPEICHERN =>
next_calc_state <= CALC_ZUWEISEN;

if(index = 1024) then
next_calc_state <= CALC_IDLE;
end if;
end case;
end process calc_state_transitions;


sync : process ( clk, reset ) is sync : process ( clk, reset ) is

VARIABLE sine_scaled : signed ( 31 downto 0 );

begin begin
if ( reset = '1' ) then if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE; current_task_state <= work.task.TASK_IDLE;
index <= 0;
index <= 1;
count <= 1;
sine_scaled := (others => '0');
data_valid_intern <= '0';
signal_write <= '0';
signal_writedata <= ( others => '0' );
elsif ( rising_edge( clk ) ) then elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state; current_task_state <= next_task_state;
case next_task_state is case next_task_state is
when work.task.TASK_IDLE => when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE => when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case; end case;

--A:
current_calc_state <= next_calc_state;
data_valid_intern <= '0';
signal_write <= '0';
case next_calc_state is
when CALC_IDLE =>
angle_intern <= (others => '0');
count <= 1;
when CALC_ZUWEISEN =>
--if(index > 1) then
angle_intern <= angle_intern + signed(step_size);
--end if;
data_valid_intern <= '1';
when CALC_WARTEN =>
when CALC_SKALIEREN =>
--if(result_valid_intern = '1') then
sine_scaled := sine_intern;
sine_scaled(30 downto 23) := sine_scaled(30 downto 23) + ( signed(amplitude(30 downto 23)) - 127);
--end if;
when CALC_IN_FIFO_ABSPEICHERN =>

if(index > 1) then
signal_writedata <= std_logic_vector(sine_scaled);
end if;

signal_write <= '1';

index <= index + 1;
count <= count + 1;
end case;
--E

end if; end if;
end process sync; end process sync;



+ 71
- 3
software/signal_processing/rand.c View File

#include "system/data_channel.h" #include "system/data_channel.h"
#include "system/float_word.h" #include "system/float_word.h"


int task_rand_run( void * task ) {
#include <stdio.h>


// TODO
int task_rand_run( void * data )
{


return 0;
rand_config * task = ( rand_config * ) data;


uint32_t data_channel_base = task->base.sink;

float seed = task->seed; //1.3
float abs_min = task->abs_min; //0.125
float abs_max = task->abs_max; //9.0

float_word random_number;
random_number.value = seed;

uint32_t mask_bit_0 = 0x1;
uint32_t mask_bit_1 = 0x2;
uint32_t mask_bit_21 = 0x200000;
uint32_t mask_bit_31 = 0x80000000;

uint32_t exponent = 0;
uint32_t shifted_exponent = 0;
uint32_t shifted = 0;
uint32_t shifted_modifiziert = 0;

data_channel_clear( data_channel_base );

for(uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i)
{

//Bits extrahieren:
uint32_t bit_0 = (random_number.word & mask_bit_0) >> 0;
uint32_t bit_1 = (random_number.word & mask_bit_1) >> 1;
uint32_t bit_21 = (random_number.word & mask_bit_21) >> 21;
uint32_t bit_31 = (random_number.word & mask_bit_31) >> 31;

//XOR:
uint32_t xor_result = bit_0 ^ bit_1 ^ bit_21 ^ bit_31;

//Shifted:
shifted = random_number.word >> 1;

//shifted &= ~(0x80000000);
shifted |= (xor_result << 31);

printf("%08x %08x %d \n", random_number.word, shifted, xor_result);

//Skalierung:
#if 1
exponent = (shifted >> 23) & 0xFF;
if(exponent & (1 << 7)){
exponent &= (0b10000001);
}else{
exponent |= (0b01111100);
}


shifted_modifiziert = shifted;
shifted_exponent = exponent << 23;
shifted_modifiziert &= 0x807FFFFF;
shifted_modifiziert |= shifted_exponent;
#endif

random_number.word = shifted_modifiziert;
data_channel_write( data_channel_base, random_number.word );
random_number.word = shifted;

}


return 0;
} }



+ 47
- 2
software/signal_processing/sine.c View File

#include "system/data_channel.h" #include "system/data_channel.h"
#include "system/float_word.h" #include "system/float_word.h"


#include <math.h>

int task_sine_run( void * data ) { int task_sine_run( void * data ) {
sine_config * task = ( sine_config * ) data;



uint32_t data_channel_base = task->base.sink;

uint32_t samples_per_periode = task->samples_per_periode;
float phase = task->phase;
float amplitude = task->amplitude;



data_channel_clear( data_channel_base );
#if 0

for (uint32_t i = 0; i < (DATA_CHANNEL_DEPTH/samples_per_periode); ++i)
{

for(uint32_t j = 0; j < (samples_per_periode); ++j)
{

float_word res;
res.value = amplitude * sin((2.0*M_PI/samples_per_periode) * j + phase);



data_channel_write( data_channel_base, res.word );
}

}
#endif
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i)
{

float_word res;
res.value = amplitude * sin((2.0*M_PI/samples_per_periode) * i + phase);



data_channel_write( data_channel_base, res.word );

}


// TODO


return 0;
return 0;
} }

Loading…
Cancel
Save