|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875 |
- #include <math.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <ctype.h>
- #include <float.h>
- #include <string.h>
- #include <stdarg.h>
- #include <limits.h>
- #include <locale.h>
- #include "svm.h"
-
- int libsvm_version = LIBSVM_VERSION;
-
- typedef float Qfloat;
- typedef signed char schar;
-
- #ifndef min
- template <class T>
- static T min(const T x, const T y) { return (x < y) ? x : y; }
- #endif
-
- #ifndef max
- template <class T>
- static T max(const T x, const T y) { return (x > y) ? x : y; }
- #endif
-
- template <class T>
- static void swap(T& x, T& y)
- {
- T t = x;
- x = y;
- y = t;
- }
-
- template <class S, class T>
- static void clone(T*& dst, S* src, const int n)
- {
- dst = new T[n];
- memcpy((void*)dst, (void*)src, sizeof(T) * n);
- }
-
- static double powi(const double base, const int times)
- {
- double tmp = base, ret = 1.0;
-
- for (int t = times; t > 0; t /= 2)
- {
- if (t % 2 == 1) { ret *= tmp; }
- tmp = tmp * tmp;
- }
- return ret;
- }
- #define INF HUGE_VAL
- #define TAU 1e-12
- #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
-
- static void print_string_stdout(const char* s)
- {
- fputs(s, stdout);
- fflush(stdout);
- }
- static void (*svm_print_string)(const char*) = &print_string_stdout;
- #if 0
- static void info(const char* fmt, ...)
- {
- char buf[BUFSIZ];
- va_list ap;
- va_start(ap, fmt);
- vsprintf(buf, fmt, ap);
- va_end(ap);
- (*svm_print_string)(buf);
- }
- #else
- static void info(const char* /*fmt*/, ...) {}
- #endif
-
- //
- // Kernel Cache
- //
- // l is the number of total data items
- // size is the cache size limit in bytes
- //
- class Cache
- {
- public:
- Cache(const int l_, const long int size_);
- ~Cache();
-
- // request data [0,len)
- // return some position p where [p,len) need to be filled
- // (p >= len if nothing needs to be filled)
- int get_data(const int index, Qfloat** data, int len);
- void swap_index(int i, int j);
- private:
- int l;
- long int size;
-
- struct head_t
- {
- head_t *prev, *next; // a circular list
- Qfloat* data;
- int len; // data[0,len) is cached in this entry
- };
-
- head_t* head;
- head_t lru_head;
- void lru_delete(head_t* h);
- void lru_insert(head_t* h);
- };
-
- Cache::Cache(const int l_, const long int size_) : l(l_), size(size_)
- {
- head = (head_t*)calloc(l, sizeof(head_t)); // initialized to 0
- size /= sizeof(Qfloat);
- size -= l * sizeof(head_t) / sizeof(Qfloat);
- size = max(size, 2 * long(l)); // cache must be large enough for two columns
- lru_head.next = lru_head.prev = &lru_head;
- }
-
- Cache::~Cache()
- {
- for (head_t* h = lru_head.next; h != &lru_head; h = h->next) { free(h->data); }
- free(head);
- }
-
- void Cache::lru_delete(head_t* h)
- {
- // delete from current location
- h->prev->next = h->next;
- h->next->prev = h->prev;
- }
-
- void Cache::lru_insert(head_t* h)
- {
- // insert to last position
- h->next = &lru_head;
- h->prev = lru_head.prev;
- h->prev->next = h;
- h->next->prev = h;
- }
-
- int Cache::get_data(const int index, Qfloat** data, int len)
- {
- head_t* h = &head[index];
- if (h->len) { lru_delete(h); }
- const int more = len - h->len;
-
- if (more > 0)
- {
- // free old space
- while (size < more)
- {
- head_t* old = lru_head.next;
- lru_delete(old);
- free(old->data);
- size += old->len;
- old->data = nullptr;
- old->len = 0;
- }
-
- // allocate new space
- h->data = (Qfloat*)realloc(h->data, sizeof(Qfloat) * len);
- size -= more;
- swap(h->len, len);
- }
-
- lru_insert(h);
- *data = h->data;
- return len;
- }
-
- void Cache::swap_index(int i, int j)
- {
- if (i == j) { return; }
-
- if (head[i].len) { lru_delete(&head[i]); }
- if (head[j].len) { lru_delete(&head[j]); }
- swap(head[i].data, head[j].data);
- swap(head[i].len, head[j].len);
- if (head[i].len) { lru_insert(&head[i]); }
- if (head[j].len) { lru_insert(&head[j]); }
-
- if (i > j) { swap(i, j); }
- for (head_t* h = lru_head.next; h != &lru_head; h = h->next)
- {
- if (h->len > i)
- {
- if (h->len > j) { swap(h->data[i], h->data[j]); }
- else
- {
- // give up
- lru_delete(h);
- free(h->data);
- size += h->len;
- h->data = nullptr;
- h->len = 0;
- }
- }
- }
- }
-
- //
- // Kernel evaluation
- //
- // the static method k_function is for doing single kernel evaluation
- // the constructor of Kernel prepares to calculate the l*l kernel matrix
- // the member function get_Q is for getting one column from the Q Matrix
- //
- class QMatrix
- {
- public:
- virtual Qfloat* get_Q(int column, int len) const = 0;
- virtual double* get_QD() const = 0;
- virtual void swap_index(int i, int j) const = 0;
- virtual ~QMatrix() {}
- };
-
- class Kernel : public QMatrix
- {
- public:
- Kernel(const int l, svm_node* const* x_, const svm_parameter& param);
- ~Kernel() override;
-
- static double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param);
- Qfloat* get_Q(int column, int len) const override = 0;
- double* get_QD() const override = 0;
- void swap_index(const int i, const int j) const override
- // no so const...
- {
- swap(x[i], x[j]);
- if (x_square) { swap(x_square[i], x_square[j]); }
- }
- protected:
-
- double (Kernel::* kernel_function)(int i, int j) const;
-
- private:
- const svm_node** x;
- double* x_square;
-
- // svm_parameter
- const int kernel_type;
- const int degree;
- const double gamma;
- const double coef0;
-
- static double dot(const svm_node* px, const svm_node* py);
- double kernel_linear(const int i, const int j) const { return dot(x[i], x[j]); }
- double kernel_poly(const int i, const int j) const { return powi(gamma * dot(x[i], x[j]) + coef0, degree); }
- double kernel_rbf(const int i, const int j) const { return exp(-gamma * (x_square[i] + x_square[j] - 2 * dot(x[i], x[j]))); }
- double kernel_sigmoid(const int i, const int j) const { return tanh(gamma * dot(x[i], x[j]) + coef0); }
- double kernel_precomputed(const int i, const int j) const { return x[i][int(x[j][0].value)].value; }
- };
-
- Kernel::Kernel(const int l, svm_node* const* x_, const svm_parameter& param)
- : kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0)
- {
- switch (kernel_type)
- {
- case LINEAR:
- kernel_function = &Kernel::kernel_linear;
- break;
- case POLY:
- kernel_function = &Kernel::kernel_poly;
- break;
- case RBF:
- kernel_function = &Kernel::kernel_rbf;
- break;
- case SIGMOID:
- kernel_function = &Kernel::kernel_sigmoid;
- break;
- case PRECOMPUTED:
- kernel_function = &Kernel::kernel_precomputed;
- break;
- }
-
- clone(x, x_, l);
-
- if (kernel_type == RBF)
- {
- x_square = new double[l];
- for (int i = 0; i < l; i++) { x_square[i] = dot(x[i], x[i]); }
- }
- else { x_square = nullptr; }
- }
-
- Kernel::~Kernel()
- {
- delete[] x;
- delete[] x_square;
- }
-
- double Kernel::dot(const svm_node* px, const svm_node* py)
- {
- double sum = 0;
- while (px->index != -1 && py->index != -1)
- {
- if (px->index == py->index)
- {
- sum += px->value * py->value;
- ++px;
- ++py;
- }
- else
- {
- if (px->index > py->index) { ++py; }
- else { ++px; }
- }
- }
- return sum;
- }
-
- double Kernel::k_function(const svm_node* x, const svm_node* y, const svm_parameter& param)
- {
- switch (param.kernel_type)
- {
- case LINEAR:
- return dot(x, y);
- case POLY:
- return powi(param.gamma * dot(x, y) + param.coef0, param.degree);
- case RBF:
- {
- double sum = 0;
- while (x->index != -1 && y->index != -1)
- {
- if (x->index == y->index)
- {
- const double d = x->value - y->value;
- sum += d * d;
- ++x;
- ++y;
- }
- else
- {
- if (x->index > y->index)
- {
- sum += y->value * y->value;
- ++y;
- }
- else
- {
- sum += x->value * x->value;
- ++x;
- }
- }
- }
-
- while (x->index != -1)
- {
- sum += x->value * x->value;
- ++x;
- }
-
- while (y->index != -1)
- {
- sum += y->value * y->value;
- ++y;
- }
-
- return exp(-param.gamma * sum);
- }
- case SIGMOID:
- return tanh(param.gamma * dot(x, y) + param.coef0);
- case PRECOMPUTED: //x: test (validation), y: SV
- return x[int(y->value)].value;
- default:
- return 0; // Unreachable
- }
- }
-
- // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
- // Solves:
- //
- // min 0.5(\alpha^T Q \alpha) + p^T \alpha
- //
- // y^T \alpha = \delta
- // y_i = +1 or -1
- // 0 <= alpha_i <= Cp for y_i = 1
- // 0 <= alpha_i <= Cn for y_i = -1
- //
- // Given:
- //
- // Q, p, y, Cp, Cn, and an initial feasible point \alpha
- // l is the size of vectors and matrices
- // eps is the stopping tolerance
- //
- // solution will be put in \alpha, objective value will be put in obj
- //
- class Solver
- {
- public:
- Solver() {}
- virtual ~Solver() {}
-
- struct SolutionInfo
- {
- double obj;
- double rho;
- double upper_bound_p;
- double upper_bound_n;
- double r; // for Solver_NU
- };
-
- void Solve(int l, const QMatrix& Q, const double* p_, const schar* y_, double* alpha_, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking);
- protected:
- enum { LOWER_BOUND, UPPER_BOUND, FREE };
-
- int active_size = 0;
- schar* y = nullptr;
- double* G = nullptr; // gradient of objective function
-
- char* alpha_status = nullptr; // LOWER_BOUND, UPPER_BOUND, FREE
- double* alpha = nullptr;
- const QMatrix* Q;
- const double* QD;
- double eps = 0.0;
- double Cp = 0.0, Cn = 0.0;
- double* p = nullptr;
- int* active_set = nullptr;
- double* G_bar = nullptr; // gradient, if we treat free variables as 0
- int l = 0.0;
- bool unshrink = true; // XXX
-
- double get_C(const int i) { return (y[i] > 0) ? Cp : Cn; }
- void update_alpha_status(const int i)
- {
- if (alpha[i] >= get_C(i)) { alpha_status[i] = UPPER_BOUND; }
- else if (alpha[i] <= 0) { alpha_status[i] = LOWER_BOUND; }
- else { alpha_status[i] = FREE; }
- }
- bool is_upper_bound(const int i) { return alpha_status[i] == UPPER_BOUND; }
- bool is_lower_bound(const int i) { return alpha_status[i] == LOWER_BOUND; }
- bool is_free(const int i) { return alpha_status[i] == FREE; }
- void swap_index(const int i, const int j);
- void reconstruct_gradient();
- virtual int select_working_set(int& out_i, int& out_j);
- virtual double calculate_rho();
- virtual void do_shrinking();
- private:
- bool be_shrunk(int i, double Gmax1, double Gmax2);
- };
-
- void Solver::swap_index(const int i, const int j)
- {
- Q->swap_index(i, j);
- swap(y[i], y[j]);
- swap(G[i], G[j]);
- swap(alpha_status[i], alpha_status[j]);
- swap(alpha[i], alpha[j]);
- swap(p[i], p[j]);
- swap(active_set[i], active_set[j]);
- swap(G_bar[i], G_bar[j]);
- }
-
- void Solver::reconstruct_gradient()
- {
- // reconstruct inactive elements of G from G_bar and free variables
-
- if (active_size == l) { return; }
-
- int i, j;
- int nr_free = 0;
-
- for (j = active_size; j < l; j++) { G[j] = G_bar[j] + p[j]; }
-
- for (j = 0; j < active_size; j++) { if (is_free(j)) { nr_free++; } }
-
- if (2 * nr_free < active_size) { info("\nWARNING: using -h 0 may be faster\n"); }
-
- if (nr_free * l > 2 * active_size * (l - active_size))
- {
- for (i = active_size; i < l; i++)
- {
- const Qfloat* Q_i = Q->get_Q(i, active_size);
- for (j = 0; j < active_size; j++) { if (is_free(j)) { G[i] += alpha[j] * Q_i[j]; } }
- }
- }
- else
- {
- for (i = 0; i < active_size; i++)
- {
- if (is_free(i))
- {
- const Qfloat* Q_i = Q->get_Q(i, l);
- const double alpha_i = alpha[i];
- for (j = active_size; j < l; j++) { G[j] += alpha_i * Q_i[j]; }
- }
- }
- }
- }
-
- void Solver::Solve(const int l, const QMatrix& Q, const double* p_, const schar* y_, double* alpha_, const double Cp, const double Cn, const double eps,
- SolutionInfo* si, const int shrinking)
- {
- this->l = l;
- this->Q = &Q;
- QD = Q.get_QD();
- clone(p, p_, l);
- clone(y, y_, l);
- clone(alpha, alpha_, l);
- this->Cp = Cp;
- this->Cn = Cn;
- this->eps = eps;
- unshrink = false;
-
- // initialize alpha_status
- {
- alpha_status = new char[l];
- for (int i = 0; i < l; i++) { update_alpha_status(i); }
- }
-
- // initialize active set (for shrinking)
- {
- active_set = new int[l];
- for (int i = 0; i < l; i++) { active_set[i] = i; }
- active_size = l;
- }
-
- // initialize gradient
- {
- G = new double[l];
- G_bar = new double[l];
- int i;
- for (i = 0; i < l; i++)
- {
- G[i] = p[i];
- G_bar[i] = 0;
- }
- for (i = 0; i < l; i++)
- {
- if (!is_lower_bound(i))
- {
- const Qfloat* Q_i = Q.get_Q(i, l);
- const double alpha_i = alpha[i];
- int j;
- for (j = 0; j < l; j++) { G[j] += alpha_i * Q_i[j]; }
- if (is_upper_bound(i)) { for (j = 0; j < l; j++) { G_bar[j] += get_C(i) * Q_i[j]; } }
- }
- }
- }
-
- // optimization step
-
- int iter = 0;
- const int max_iter = max(10000000, l > INT_MAX / 100 ? INT_MAX : 100 * l);
- int counter = min(l, 1000) + 1;
-
- while (iter < max_iter)
- {
- // show progress and do shrinking
-
- if (--counter == 0)
- {
- counter = min(l, 1000);
- if (shrinking) { do_shrinking(); }
- info(".");
- }
-
- int i, j;
- if (select_working_set(i, j) != 0)
- {
- // reconstruct the whole gradient
- reconstruct_gradient();
- // reset active set size and check
- active_size = l;
- info("*");
- if (select_working_set(i, j) != 0) { break; } // do shrinking next iteration
- counter = 1;
- }
-
- ++iter;
-
- // update alpha[i] and alpha[j], handle bounds carefully
-
- const Qfloat* Q_i = Q.get_Q(i, active_size);
- const Qfloat* Q_j = Q.get_Q(j, active_size);
-
- const double C_i = get_C(i);
- const double C_j = get_C(j);
-
- const double old_alpha_i = alpha[i];
- const double old_alpha_j = alpha[j];
-
- if (y[i] != y[j])
- {
- double quad_coef = QD[i] + QD[j] + 2 * Q_i[j];
- if (quad_coef <= 0) { quad_coef = TAU; }
- const double delta = (-G[i] - G[j]) / quad_coef;
- const double diff = alpha[i] - alpha[j];
- alpha[i] += delta;
- alpha[j] += delta;
-
- if (diff > 0)
- {
- if (alpha[j] < 0)
- {
- alpha[j] = 0;
- alpha[i] = diff;
- }
- }
- else
- {
- if (alpha[i] < 0)
- {
- alpha[i] = 0;
- alpha[j] = -diff;
- }
- }
- if (diff > C_i - C_j)
- {
- if (alpha[i] > C_i)
- {
- alpha[i] = C_i;
- alpha[j] = C_i - diff;
- }
- }
- else
- {
- if (alpha[j] > C_j)
- {
- alpha[j] = C_j;
- alpha[i] = C_j + diff;
- }
- }
- }
- else
- {
- double quad_coef = QD[i] + QD[j] - 2 * Q_i[j];
- if (quad_coef <= 0) { quad_coef = TAU; }
- const double delta = (G[i] - G[j]) / quad_coef;
- const double sum = alpha[i] + alpha[j];
- alpha[i] -= delta;
- alpha[j] += delta;
-
- if (sum > C_i)
- {
- if (alpha[i] > C_i)
- {
- alpha[i] = C_i;
- alpha[j] = sum - C_i;
- }
- }
- else
- {
- if (alpha[j] < 0)
- {
- alpha[j] = 0;
- alpha[i] = sum;
- }
- }
- if (sum > C_j)
- {
- if (alpha[j] > C_j)
- {
- alpha[j] = C_j;
- alpha[i] = sum - C_j;
- }
- }
- else
- {
- if (alpha[i] < 0)
- {
- alpha[i] = 0;
- alpha[j] = sum;
- }
- }
- }
-
- // update G
-
- const double delta_alpha_i = alpha[i] - old_alpha_i;
- const double delta_alpha_j = alpha[j] - old_alpha_j;
-
- for (int k = 0; k < active_size; k++) { G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j; }
-
- // update alpha_status and G_bar
-
- {
- const bool ui = is_upper_bound(i);
- const bool uj = is_upper_bound(j);
- update_alpha_status(i);
- update_alpha_status(j);
- int k;
- if (ui != is_upper_bound(i))
- {
- Q_i = Q.get_Q(i, l);
- if (ui) { for (k = 0; k < l; k++) { G_bar[k] -= C_i * Q_i[k]; } }
- else { for (k = 0; k < l; k++) { G_bar[k] += C_i * Q_i[k]; } }
- }
-
- if (uj != is_upper_bound(j))
- {
- Q_j = Q.get_Q(j, l);
- if (uj) { for (k = 0; k < l; k++) { G_bar[k] -= C_j * Q_j[k]; } }
- else { for (k = 0; k < l; k++) { G_bar[k] += C_j * Q_j[k]; } }
- }
- }
- }
-
- if (iter >= max_iter)
- {
- if (active_size < l)
- {
- // reconstruct the whole gradient to calculate objective value
- reconstruct_gradient();
- active_size = l;
- info("*");
- }
- fprintf(stderr, "\nWARNING: reaching max number of iterations\n");
- }
-
- // calculate rho
-
- si->rho = calculate_rho();
-
- // calculate objective value
- {
- double v = 0;
- for (int i = 0; i < l; i++) { v += alpha[i] * (G[i] + p[i]); }
-
- si->obj = v / 2;
- }
-
- // put back the solution
- {
- for (int i = 0; i < l; i++) { alpha_[active_set[i]] = alpha[i]; }
- }
-
- // juggle everything back
- /*{
- for(int i=0;i<l;i++)
- while(active_set[i] != i)
- swap_index(i,active_set[i]);
- // or Q.swap_index(i,active_set[i]);
- }*/
-
- si->upper_bound_p = Cp;
- si->upper_bound_n = Cn;
-
- info("\noptimization finished, #iter = %d\n", iter);
-
- delete[] p;
- delete[] y;
- delete[] alpha;
- delete[] alpha_status;
- delete[] active_set;
- delete[] G;
- delete[] G_bar;
- }
-
- // return 1 if already optimal, return 0 otherwise
- int Solver::select_working_set(int& out_i, int& out_j)
- {
- // return i,j such that
- // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
- // j: minimizes the decrease of obj value
- // (if quadratic coefficeint <= 0, replace it with tau)
- // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
-
- double Gmax = -INF;
- double Gmax2 = -INF;
- int Gmax_idx = -1;
- int Gmin_idx = -1;
- double obj_diff_min = INF;
-
- for (int t = 0; t < active_size; t++)
- {
- if (y[t] == +1)
- {
- if (!is_upper_bound(t))
- {
- if (-G[t] >= Gmax)
- {
- Gmax = -G[t];
- Gmax_idx = t;
- }
- }
- }
- else
- {
- if (!is_lower_bound(t))
- {
- if (G[t] >= Gmax)
- {
- Gmax = G[t];
- Gmax_idx = t;
- }
- }
- }
- }
-
- const int i = Gmax_idx;
- const Qfloat* Q_i = nullptr;
- if (i != -1) { Q_i = Q->get_Q(i, active_size); } // NULL Q_i not accessed: Gmax=-INF if i=-1
-
- for (int j = 0; j < active_size; j++)
- {
- if (y[j] == +1)
- {
- if (!is_lower_bound(j))
- {
- const double grad_diff = Gmax + G[j];
- if (G[j] >= Gmax2) { Gmax2 = G[j]; }
- if (grad_diff > 0)
- {
- double obj_diff;
- const double quad_coef = QD[i] + QD[j] - 2.0 * y[i] * Q_i[j];
- if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
- else { obj_diff = -(grad_diff * grad_diff) / TAU; }
-
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx = j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- else
- {
- if (!is_upper_bound(j))
- {
- const double grad_diff = Gmax - G[j];
- if (-G[j] >= Gmax2) { Gmax2 = -G[j]; }
- if (grad_diff > 0)
- {
- double obj_diff;
- const double quad_coef = QD[i] + QD[j] + 2.0 * y[i] * Q_i[j];
- if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
- else { obj_diff = -(grad_diff * grad_diff) / TAU; }
-
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx = j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- }
-
- if (Gmax + Gmax2 < eps || Gmin_idx == -1) { return 1; }
-
- out_i = Gmax_idx;
- out_j = Gmin_idx;
- return 0;
- }
-
- bool Solver::be_shrunk(const int i, const double Gmax1, const double Gmax2)
- {
- if (is_upper_bound(i))
- {
- if (y[i] == +1) { return (-G[i] > Gmax1); }
- return (-G[i] > Gmax2);
- }
- if (is_lower_bound(i))
- {
- if (y[i] == +1) { return (G[i] > Gmax2); }
- return (G[i] > Gmax1);
- }
- return (false);
- }
-
- void Solver::do_shrinking()
- {
- int i;
- double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
- double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
-
- // find maximal violating pair first
- for (i = 0; i < active_size; i++)
- {
- if (y[i] == +1)
- {
- if (!is_upper_bound(i)) { if (-G[i] >= Gmax1) { Gmax1 = -G[i]; } }
- if (!is_lower_bound(i)) { if (G[i] >= Gmax2) { Gmax2 = G[i]; } }
- }
- else
- {
- if (!is_upper_bound(i)) { if (-G[i] >= Gmax2) { Gmax2 = -G[i]; } }
- if (!is_lower_bound(i)) { if (G[i] >= Gmax1) { Gmax1 = G[i]; } }
- }
- }
-
- if (unshrink == false && Gmax1 + Gmax2 <= eps * 10)
- {
- unshrink = true;
- reconstruct_gradient();
- active_size = l;
- info("*");
- }
-
- for (i = 0; i < active_size; i++)
- {
- if (be_shrunk(i, Gmax1, Gmax2))
- {
- active_size--;
- while (active_size > i)
- {
- if (!be_shrunk(active_size, Gmax1, Gmax2))
- {
- swap_index(i, active_size);
- break;
- }
- active_size--;
- }
- }
- }
- }
-
- double Solver::calculate_rho()
- {
- double r;
- int nr_free = 0;
- double ub = INF, lb = -INF, sum_free = 0;
- for (int i = 0; i < active_size; i++)
- {
- const double yG = y[i] * G[i];
-
- if (is_upper_bound(i))
- {
- if (y[i] == -1) { ub = min(ub, yG); }
- else { lb = max(lb, yG); }
- }
- else if (is_lower_bound(i))
- {
- if (y[i] == +1) { ub = min(ub, yG); }
- else { lb = max(lb, yG); }
- }
- else
- {
- ++nr_free;
- sum_free += yG;
- }
- }
-
- if (nr_free > 0) { r = sum_free / nr_free; }
- else { r = (ub + lb) / 2; }
-
- return r;
- }
-
- //
- // Solver for nu-svm classification and regression
- //
- // additional constraint: e^T \alpha = constant
- //
- class Solver_NU : public Solver
- {
- public:
- Solver_NU() {}
- void Solve(const int l, const QMatrix& Q, const double* p, const schar* y, double* alpha, const double Cp, const double Cn, const double eps,
- SolutionInfo* si, const int shrinking)
- {
- this->si = si;
- Solver::Solve(l, Q, p, y, alpha, Cp, Cn, eps, si, shrinking);
- }
- private:
- SolutionInfo* si = nullptr;
- int select_working_set(int& out_i, int& out_j) override;
- double calculate_rho() override;
- bool be_shrunk(const int i, const double Gmax1, const double Gmax2, const double Gmax3, const double Gmax4);
- void do_shrinking() override;
- };
-
- // return 1 if already optimal, return 0 otherwise
- int Solver_NU::select_working_set(int& out_i, int& out_j)
- {
- // return i,j such that y_i = y_j and
- // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
- // j: minimizes the decrease of obj value
- // (if quadratic coefficeint <= 0, replace it with tau)
- // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
-
- double Gmaxp = -INF;
- double Gmaxp2 = -INF;
- int Gmaxp_idx = -1;
-
- double Gmaxn = -INF;
- double Gmaxn2 = -INF;
- int Gmaxn_idx = -1;
-
- int Gmin_idx = -1;
- double obj_diff_min = INF;
-
- for (int t = 0; t < active_size; t++)
- {
- if (y[t] == +1)
- {
- if (!is_upper_bound(t))
- {
- if (-G[t] >= Gmaxp)
- {
- Gmaxp = -G[t];
- Gmaxp_idx = t;
- }
- }
- }
- else
- {
- if (!is_lower_bound(t))
- {
- if (G[t] >= Gmaxn)
- {
- Gmaxn = G[t];
- Gmaxn_idx = t;
- }
- }
- }
- }
-
- const int ip = Gmaxp_idx;
- const int in = Gmaxn_idx;
- const Qfloat* Q_ip = nullptr;
- const Qfloat* Q_in = nullptr;
- if (ip != -1) { Q_ip = Q->get_Q(ip, active_size); } // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
- if (in != -1) { Q_in = Q->get_Q(in, active_size); }
-
- for (int j = 0; j < active_size; j++)
- {
- if (y[j] == +1)
- {
- if (!is_lower_bound(j))
- {
- const double grad_diff = Gmaxp + G[j];
- if (G[j] >= Gmaxp2) { Gmaxp2 = G[j]; }
- if (grad_diff > 0)
- {
- double obj_diff;
- const double quad_coef = QD[ip] + QD[j] - 2 * Q_ip[j];
- if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
- else { obj_diff = -(grad_diff * grad_diff) / TAU; }
-
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx = j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- else
- {
- if (!is_upper_bound(j))
- {
- const double grad_diff = Gmaxn - G[j];
- if (-G[j] >= Gmaxn2) { Gmaxn2 = -G[j]; }
- if (grad_diff > 0)
- {
- double obj_diff;
- const double quad_coef = QD[in] + QD[j] - 2 * Q_in[j];
- if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
- else { obj_diff = -(grad_diff * grad_diff) / TAU; }
-
- if (obj_diff <= obj_diff_min)
- {
- Gmin_idx = j;
- obj_diff_min = obj_diff;
- }
- }
- }
- }
- }
-
- if (max(Gmaxp + Gmaxp2, Gmaxn + Gmaxn2) < eps || Gmin_idx == -1) { return 1; }
-
- if (y[Gmin_idx] == +1) { out_i = Gmaxp_idx; }
- else { out_i = Gmaxn_idx; }
- out_j = Gmin_idx;
-
- return 0;
- }
-
- bool Solver_NU::be_shrunk(const int i, const double Gmax1, const double Gmax2, const double Gmax3, const double Gmax4)
- {
- if (is_upper_bound(i))
- {
- if (y[i] == +1) { return (-G[i] > Gmax1); }
- return (-G[i] > Gmax4);
- }
- if (is_lower_bound(i))
- {
- if (y[i] == +1) { return (G[i] > Gmax2); }
- return (G[i] > Gmax3);
- }
- return (false);
- }
-
- void Solver_NU::do_shrinking()
- {
- double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
- double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
- double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
- double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
-
- // find maximal violating pair first
- int i;
- for (i = 0; i < active_size; i++)
- {
- if (!is_upper_bound(i))
- {
- if (y[i] == +1) { if (-G[i] > Gmax1) { Gmax1 = -G[i]; } }
- else if (-G[i] > Gmax4) { Gmax4 = -G[i]; }
- }
- if (!is_lower_bound(i))
- {
- if (y[i] == +1) { if (G[i] > Gmax2) { Gmax2 = G[i]; } }
- else if (G[i] > Gmax3) { Gmax3 = G[i]; }
- }
- }
-
- if (unshrink == false && max(Gmax1 + Gmax2, Gmax3 + Gmax4) <= eps * 10)
- {
- unshrink = true;
- reconstruct_gradient();
- active_size = l;
- }
-
- for (i = 0; i < active_size; i++)
- {
- if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
- {
- active_size--;
- while (active_size > i)
- {
- if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
- {
- swap_index(i, active_size);
- break;
- }
- active_size--;
- }
- }
- }
- }
-
- double Solver_NU::calculate_rho()
- {
- int nr_free1 = 0, nr_free2 = 0;
- double ub1 = INF, ub2 = INF;
- double lb1 = -INF, lb2 = -INF;
- double sum_free1 = 0, sum_free2 = 0;
-
- for (int i = 0; i < active_size; i++)
- {
- if (y[i] == +1)
- {
- if (is_upper_bound(i)) { lb1 = max(lb1, G[i]); }
- else if (is_lower_bound(i)) { ub1 = min(ub1, G[i]); }
- else
- {
- ++nr_free1;
- sum_free1 += G[i];
- }
- }
- else
- {
- if (is_upper_bound(i)) { lb2 = max(lb2, G[i]); }
- else if (is_lower_bound(i)) { ub2 = min(ub2, G[i]); }
- else
- {
- ++nr_free2;
- sum_free2 += G[i];
- }
- }
- }
-
- double r1, r2;
- if (nr_free1 > 0) { r1 = sum_free1 / nr_free1; }
- else { r1 = (ub1 + lb1) / 2; }
-
- if (nr_free2 > 0) { r2 = sum_free2 / nr_free2; }
- else { r2 = (ub2 + lb2) / 2; }
-
- si->r = (r1 + r2) / 2;
- return (r1 - r2) / 2;
- }
-
- //
- // Q matrices for various formulations
- //
- class SVC_Q : public Kernel
- {
- public:
- SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar* y_)
- : Kernel(prob.l, prob.x, param)
- {
- clone(y, y_, prob.l);
- cache = new Cache(prob.l, long(param.cache_size * (1 << 20)));
- QD = new double[prob.l];
- for (int i = 0; i < prob.l; i++) { QD[i] = (this->*kernel_function)(i, i); }
- }
-
- Qfloat* get_Q(const int i, const int len) const override
- {
- Qfloat* data;
- int start;
- if ((start = cache->get_data(i, &data, len)) < len)
- {
- for (int j = start; j < len; j++) { data[j] = Qfloat(y[i] * y[j] * (this->*kernel_function)(i, j)); }
- }
- return data;
- }
-
- double* get_QD() const override { return QD; }
-
- void swap_index(const int i, const int j) const override
- {
- cache->swap_index(i, j);
- Kernel::swap_index(i, j);
- swap(y[i], y[j]);
- swap(QD[i], QD[j]);
- }
-
- ~SVC_Q() override
- {
- delete[] y;
- delete cache;
- delete[] QD;
- }
- private:
- schar* y;
- Cache* cache;
- double* QD;
- };
-
- class ONE_CLASS_Q : public Kernel
- {
- public:
- ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
- : Kernel(prob.l, prob.x, param)
- {
- cache = new Cache(prob.l, long(param.cache_size * (1 << 20)));
- QD = new double[prob.l];
- for (int i = 0; i < prob.l; i++) { QD[i] = (this->*kernel_function)(i, i); }
- }
-
- Qfloat* get_Q(const int i, const int len) const override
- {
- Qfloat* data;
- int start;
- if ((start = cache->get_data(i, &data, len)) < len) { for (int j = start; j < len; j++) { data[j] = Qfloat((this->*kernel_function)(i, j)); } }
- return data;
- }
-
- double* get_QD() const override { return QD; }
-
- void swap_index(const int i, const int j) const override
- {
- cache->swap_index(i, j);
- Kernel::swap_index(i, j);
- swap(QD[i], QD[j]);
- }
-
- ~ONE_CLASS_Q() override
- {
- delete cache;
- delete[] QD;
- }
- private:
- Cache* cache;
- double* QD;
- };
-
- class SVR_Q : public Kernel
- {
- public:
- SVR_Q(const svm_problem& prob, const svm_parameter& param)
- : Kernel(prob.l, prob.x, param)
- {
- l = prob.l;
- cache = new Cache(l, long(param.cache_size * (1 << 20)));
- QD = new double[2 * l];
- sign = new schar[2 * l];
- index = new int[2 * l];
- for (int k = 0; k < l; k++)
- {
- sign[k] = 1;
- sign[k + l] = -1;
- index[k] = k;
- index[k + l] = k;
- QD[k] = (this->*kernel_function)(k, k);
- QD[k + l] = QD[k];
- }
- buffer[0] = new Qfloat[2 * l];
- buffer[1] = new Qfloat[2 * l];
- next_buffer = 0;
- }
-
- void swap_index(const int i, const int j) const override
- {
- swap(sign[i], sign[j]);
- swap(index[i], index[j]);
- swap(QD[i], QD[j]);
- }
-
- Qfloat* get_Q(const int i, const int len) const override
- {
- Qfloat* data;
- int j, real_i = index[i];
- if (cache->get_data(real_i, &data, l) < l) { for (j = 0; j < l; j++) { data[j] = Qfloat((this->*kernel_function)(real_i, j)); } }
-
- // reorder and copy
- Qfloat* buf = buffer[next_buffer];
- next_buffer = 1 - next_buffer;
- const schar si = sign[i];
- for (j = 0; j < len; j++) { buf[j] = Qfloat(si) * Qfloat(sign[j]) * data[index[j]]; }
- return buf;
- }
-
- double* get_QD() const override { return QD; }
-
- ~SVR_Q() override
- {
- delete cache;
- delete[] sign;
- delete[] index;
- delete[] buffer[0];
- delete[] buffer[1];
- delete[] QD;
- }
- private:
- int l;
- Cache* cache;
- schar* sign;
- int* index;
- mutable int next_buffer;
- Qfloat* buffer[2];
- double* QD;
- };
-
- //
- // construct and solve various formulations
- //
- static void solve_c_svc(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si, const double Cp, const double Cn)
- {
- const int l = prob->l;
- double* minus_ones = new double[l];
- schar* y = new schar[l];
-
- int i;
-
- for (i = 0; i < l; i++)
- {
- alpha[i] = 0;
- minus_ones[i] = -1;
- if (prob->y[i] > 0) { y[i] = +1; }
- else { y[i] = -1; }
- }
-
- Solver s;
- s.Solve(l, SVC_Q(*prob, *param, y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking);
-
- double sum_alpha = 0;
- for (i = 0; i < l; i++) { sum_alpha += alpha[i]; }
-
- if (Cp == Cn) { info("nu = %f\n", sum_alpha / (Cp * prob->l)); }
-
- for (i = 0; i < l; i++) { alpha[i] *= y[i]; }
-
- delete[] minus_ones;
- delete[] y;
- }
-
- static void solve_nu_svc(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
- {
- int i;
- const int l = prob->l;
- const double nu = param->nu;
-
- schar* y = new schar[l];
-
- for (i = 0; i < l; i++)
- {
- if (prob->y[i] > 0) { y[i] = +1; }
- else { y[i] = -1; }
- }
-
- double sum_pos = nu * l / 2;
- double sum_neg = nu * l / 2;
-
- for (i = 0; i < l; i++)
- {
- if (y[i] == +1)
- {
- alpha[i] = min(1.0, sum_pos);
- sum_pos -= alpha[i];
- }
- else
- {
- alpha[i] = min(1.0, sum_neg);
- sum_neg -= alpha[i];
- }
- }
-
- double* zeros = new double[l];
-
- for (i = 0; i < l; i++) { zeros[i] = 0; }
-
- Solver_NU s;
- s.Solve(l, SVC_Q(*prob, *param, y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking);
- const double r = si->r;
-
- info("C = %f\n", 1 / r);
-
- for (i = 0; i < l; i++) { alpha[i] *= y[i] / r; }
-
- si->rho /= r;
- si->obj /= (r * r);
- si->upper_bound_p = 1 / r;
- si->upper_bound_n = 1 / r;
-
- delete[] y;
- delete[] zeros;
- }
-
- static void solve_one_class(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
- {
- const int l = prob->l;
- double* zeros = new double[l];
- schar* ones = new schar[l];
- int i;
-
- const int n = int(param->nu * prob->l); // # of alpha's at upper bound
-
- for (i = 0; i < n; i++) { alpha[i] = 1; }
- if (n < prob->l) { alpha[n] = param->nu * prob->l - n; }
- for (i = n + 1; i < l; i++) { alpha[i] = 0; }
-
- for (i = 0; i < l; i++)
- {
- zeros[i] = 0;
- ones[i] = 1;
- }
-
- Solver s;
- s.Solve(l, ONE_CLASS_Q(*prob, *param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking);
-
- delete[] zeros;
- delete[] ones;
- }
-
- static void solve_epsilon_svr(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
- {
- const int l = prob->l;
- double* alpha2 = new double[2 * l];
- double* linear_term = new double[2 * l];
- schar* y = new schar[2 * l];
- int i;
-
- for (i = 0; i < l; i++)
- {
- alpha2[i] = 0;
- linear_term[i] = param->p - prob->y[i];
- y[i] = 1;
-
- alpha2[i + l] = 0;
- linear_term[i + l] = param->p + prob->y[i];
- y[i + l] = -1;
- }
-
- Solver s;
- s.Solve(2 * l, SVR_Q(*prob, *param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking);
-
- double sum_alpha = 0;
- for (i = 0; i < l; i++)
- {
- alpha[i] = alpha2[i] - alpha2[i + l];
- sum_alpha += fabs(alpha[i]);
- }
- info("nu = %f\n", sum_alpha / (param->C * l));
-
- delete[] alpha2;
- delete[] linear_term;
- delete[] y;
- }
-
- static void solve_nu_svr(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
- {
- const int l = prob->l;
- const double C = param->C;
- double* alpha2 = new double[2 * l];
- double* linear_term = new double[2 * l];
- schar* y = new schar[2 * l];
- int i;
-
- double sum = C * param->nu * l / 2;
- for (i = 0; i < l; i++)
- {
- alpha2[i] = alpha2[i + l] = min(sum, C);
- sum -= alpha2[i];
-
- linear_term[i] = -prob->y[i];
- y[i] = 1;
-
- linear_term[i + l] = prob->y[i];
- y[i + l] = -1;
- }
-
- Solver_NU s;
- s.Solve(2 * l, SVR_Q(*prob, *param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking);
-
- info("epsilon = %f\n", -si->r);
-
- for (i = 0; i < l; i++) { alpha[i] = alpha2[i] - alpha2[i + l]; }
-
- delete[] alpha2;
- delete[] linear_term;
- delete[] y;
- }
-
- //
- // decision_function
- //
- struct decision_function
- {
- double* alpha;
- double rho;
- };
-
- static decision_function svm_train_one(const svm_problem* prob, const svm_parameter* param, const double Cp, const double Cn)
- {
- double* alpha = Malloc(double, prob->l);
- Solver::SolutionInfo si;
- switch (param->svm_type)
- {
- case C_SVC:
- solve_c_svc(prob, param, alpha, &si, Cp, Cn);
- break;
- case NU_SVC:
- solve_nu_svc(prob, param, alpha, &si);
- break;
- case ONE_CLASS:
- solve_one_class(prob, param, alpha, &si);
- break;
- case EPSILON_SVR:
- solve_epsilon_svr(prob, param, alpha, &si);
- break;
- case NU_SVR:
- solve_nu_svr(prob, param, alpha, &si);
- break;
- }
-
- info("obj = %f, rho = %f\n", si.obj, si.rho);
-
- // output SVs
-
- int nSV = 0;
- int nBSV = 0;
- for (int i = 0; i < prob->l; i++)
- {
- if (fabs(alpha[i]) > 0)
- {
- ++nSV;
- if (prob->y[i] > 0) { if (fabs(alpha[i]) >= si.upper_bound_p) { ++nBSV; } }
- else { if (fabs(alpha[i]) >= si.upper_bound_n) { ++nBSV; } }
- }
- }
-
- info("nSV = %d, nBSV = %d\n", nSV, nBSV);
-
- decision_function f;
- f.alpha = alpha;
- f.rho = si.rho;
- return f;
- }
-
- // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
- static void sigmoid_train(const int l, const double* dec_values, const double* labels, double& A, double& B)
- {
- double prior1 = 0, prior0 = 0;
- int i;
-
- for (i = 0; i < l; i++)
- {
- if (labels[i] > 0) { prior1 += 1; }
- else { prior0 += 1; }
- }
-
- const int max_iter = 100; // Maximal number of iterations
- const double min_step = 1e-10; // Minimal step taken in line search
- const double sigma = 1e-12; // For numerically strict PD of Hessian
- const double eps = 1e-5;
- const double hiTarget = (prior1 + 1.0) / (prior1 + 2.0);
- const double loTarget = 1 / (prior0 + 2.0);
- double* t = Malloc(double, l);
- double fApB, p, q;
- int iter;
-
- // Initial Point and Initial Fun Value
- A = 0.0;
- B = log((prior0 + 1.0) / (prior1 + 1.0));
- double fval = 0.0;
-
- for (i = 0; i < l; i++)
- {
- if (labels[i] > 0) { t[i] = hiTarget; }
- else { t[i] = loTarget; }
- fApB = dec_values[i] * A + B;
- if (fApB >= 0) { fval += t[i] * fApB + log(1 + exp(-fApB)); }
- else { fval += (t[i] - 1) * fApB + log(1 + exp(fApB)); }
- }
- for (iter = 0; iter < max_iter; iter++)
- {
- // Update Gradient and Hessian (use H' = H + sigma I)
- double h11 = sigma; // numerically ensures strict PD
- double h22 = sigma;
- double h21 = 0.0;
- double g1 = 0.0;
- double g2 = 0.0;
- for (i = 0; i < l; i++)
- {
- fApB = dec_values[i] * A + B;
- if (fApB >= 0)
- {
- p = exp(-fApB) / (1.0 + exp(-fApB));
- q = 1.0 / (1.0 + exp(-fApB));
- }
- else
- {
- p = 1.0 / (1.0 + exp(fApB));
- q = exp(fApB) / (1.0 + exp(fApB));
- }
- const double d2 = p * q;
- h11 += dec_values[i] * dec_values[i] * d2;
- h22 += d2;
- h21 += dec_values[i] * d2;
- const double d1 = t[i] - p;
- g1 += dec_values[i] * d1;
- g2 += d1;
- }
-
- // Stopping Criteria
- if (fabs(g1) < eps && fabs(g2) < eps) { break; }
-
- // Finding Newton direction: -inv(H') * g
- const double det = h11 * h22 - h21 * h21;
- const double dA = -(h22 * g1 - h21 * g2) / det;
- const double dB = -(-h21 * g1 + h11 * g2) / det;
- const double gd = g1 * dA + g2 * dB;
-
-
- double stepsize = 1; // Line Search
- while (stepsize >= min_step)
- {
- const double newA = A + stepsize * dA;
- const double newB = B + stepsize * dB;
-
- // New function value
- double newf = 0.0;
- for (i = 0; i < l; i++)
- {
- fApB = dec_values[i] * newA + newB;
- if (fApB >= 0) { newf += t[i] * fApB + log(1 + exp(-fApB)); }
- else { newf += (t[i] - 1) * fApB + log(1 + exp(fApB)); }
- }
- // Check sufficient decrease
- if (newf < fval + 0.0001 * stepsize * gd)
- {
- A = newA;
- B = newB;
- fval = newf;
- break;
- }
- stepsize = stepsize / 2.0;
- }
-
- if (stepsize < min_step)
- {
- info("Line search fails in two-class probability estimates\n");
- break;
- }
- }
-
- if (iter >= max_iter) { info("Reaching maximal iterations in two-class probability estimates\n"); }
- free(t);
- }
-
- static double sigmoid_predict(const double decision_value, const double A, const double B)
- {
- const double fApB = decision_value * A + B;
- // 1-p used later; avoid catastrophic cancellation
- if (fApB >= 0) { return exp(-fApB) / (1.0 + exp(-fApB)); }
- return 1.0 / (1 + exp(fApB));
- }
-
- // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
- static void multiclass_probability(const int k, double** r, double* p)
- {
- int t, j;
- int iter = 0, max_iter = max(100, k);
- double** Q = Malloc(double*, k);
- double* Qp = Malloc(double, k);
- const double eps = 0.005 / k;
-
- for (t = 0; t < k; t++)
- {
- p[t] = 1.0 / k; // Valid if k = 1
- Q[t] = Malloc(double, k);
- Q[t][t] = 0;
- for (j = 0; j < t; j++)
- {
- Q[t][t] += r[j][t] * r[j][t];
- Q[t][j] = Q[j][t];
- }
- for (j = t + 1; j < k; j++)
- {
- Q[t][t] += r[j][t] * r[j][t];
- Q[t][j] = -r[j][t] * r[t][j];
- }
- }
- for (; iter < max_iter; iter++)
- {
- // stopping condition, recalculate QP,pQP for numerical accuracy
- double pQp = 0;
- for (t = 0; t < k; t++)
- {
- Qp[t] = 0;
- for (j = 0; j < k; j++) { Qp[t] += Q[t][j] * p[j]; }
- pQp += p[t] * Qp[t];
- }
- double max_error = 0;
- for (t = 0; t < k; t++)
- {
- const double error = fabs(Qp[t] - pQp);
- if (error > max_error) { max_error = error; }
- }
- if (max_error < eps) { break; }
-
- for (t = 0; t < k; t++)
- {
- const double diff = (-Qp[t] + pQp) / Q[t][t];
- p[t] += diff;
- pQp = (pQp + diff * (diff * Q[t][t] + 2 * Qp[t])) / (1 + diff) / (1 + diff);
- for (j = 0; j < k; j++)
- {
- Qp[j] = (Qp[j] + diff * Q[t][j]) / (1 + diff);
- p[j] /= (1 + diff);
- }
- }
- }
- if (iter >= max_iter) { info("Exceeds max_iter in multiclass_prob\n"); }
- for (t = 0; t < k; t++) { free(Q[t]); }
- free(Q);
- free(Qp);
- }
-
- // Cross-validation decision values for probability estimates
- static void svm_binary_svc_probability(const svm_problem* prob, const svm_parameter* param, const double Cp, const double Cn, double& probA, double& probB)
- {
- int i;
- const int nr_fold = 5;
- int* perm = Malloc(int, prob->l);
- double* dec_values = Malloc(double, prob->l);
-
- // random shuffle
- for (i = 0; i < prob->l; i++) { perm[i] = i; }
- for (i = 0; i < prob->l; i++)
- {
- const int j = i + rand() % (prob->l - i);
- swap(perm[i], perm[j]);
- }
- for (i = 0; i < nr_fold; i++)
- {
- const int begin = i * prob->l / nr_fold;
- const int end = (i + 1) * prob->l / nr_fold;
- int j;
- struct svm_problem subprob;
-
- subprob.l = prob->l - (end - begin);
- subprob.x = Malloc(struct svm_node*, subprob.l);
- subprob.y = Malloc(double, subprob.l);
-
- int k = 0;
- for (j = 0; j < begin; j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- for (j = end; j < prob->l; j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- int p_count = 0, n_count = 0;
- for (j = 0; j < k; j++)
- {
- if (subprob.y[j] > 0) { p_count++; }
- else { n_count++; }
- }
-
- if (p_count == 0 && n_count == 0) { for (j = begin; j < end; j++) { dec_values[perm[j]] = 0; } }
- else if (p_count > 0 && n_count == 0) { for (j = begin; j < end; j++) { dec_values[perm[j]] = 1; } }
- else if (p_count == 0 && n_count > 0) { for (j = begin; j < end; j++) { dec_values[perm[j]] = -1; } }
- else
- {
- svm_parameter subparam = *param;
- subparam.probability = 0;
- subparam.C = 1.0;
- subparam.nr_weight = 2;
- subparam.weight_label = Malloc(int, 2);
- subparam.weight = Malloc(double, 2);
- subparam.weight_label[0] = +1;
- subparam.weight_label[1] = -1;
- subparam.weight[0] = Cp;
- subparam.weight[1] = Cn;
- struct svm_model* submodel = svm_train(&subprob, &subparam);
- for (j = begin; j < end; j++)
- {
- svm_predict_values(submodel, prob->x[perm[j]], &(dec_values[perm[j]]));
- // ensure +1 -1 order; reason not using CV subroutine
- dec_values[perm[j]] *= submodel->label[0];
- }
- svm_free_and_destroy_model(&submodel);
- svm_destroy_param(&subparam);
- }
- free(subprob.x);
- free(subprob.y);
- }
- sigmoid_train(prob->l, dec_values, prob->y, probA, probB);
- free(dec_values);
- free(perm);
- }
-
- // Return parameter of a Laplace distribution
- static double svm_svr_probability(const svm_problem* prob, const svm_parameter* param)
- {
- int i;
- const int nr_fold = 5;
- double* ymv = Malloc(double, prob->l);
- double mae = 0;
-
- svm_parameter newparam = *param;
- newparam.probability = 0;
- svm_cross_validation(prob, &newparam, nr_fold, ymv);
- for (i = 0; i < prob->l; i++)
- {
- ymv[i] = prob->y[i] - ymv[i];
- mae += fabs(ymv[i]);
- }
- mae /= prob->l;
- const double std = sqrt(2 * mae * mae);
- int count = 0;
- mae = 0;
- for (i = 0; i < prob->l; i++)
- {
- if (fabs(ymv[i]) > 5 * std) { count = count + 1; }
- else { mae += fabs(ymv[i]); }
- }
- mae /= (prob->l - count);
- info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n", mae);
- free(ymv);
- return mae;
- }
-
-
- // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
- // perm, length l, must be allocated before calling this subroutine
- static void svm_group_classes(const svm_problem* prob, int* nr_class_ret, int** label_ret, int** start_ret, int** count_ret, int* perm)
- {
- const int l = prob->l;
- int max_nr_class = 16;
- int nr_class = 0;
- int* label = Malloc(int, max_nr_class);
- int* count = Malloc(int, max_nr_class);
- int* data_label = Malloc(int, l);
- int i;
-
- for (i = 0; i < l; i++)
- {
- const int this_label = int(prob->y[i]);
- int j;
- for (j = 0; j < nr_class; j++)
- {
- if (this_label == label[j])
- {
- ++count[j];
- break;
- }
- }
- data_label[i] = j;
- if (j == nr_class)
- {
- if (nr_class == max_nr_class)
- {
- max_nr_class *= 2;
- label = (int*)realloc(label, max_nr_class * sizeof(int));
- count = (int*)realloc(count, max_nr_class * sizeof(int));
- }
- label[nr_class] = this_label;
- count[nr_class] = 1;
- ++nr_class;
- }
- }
-
- //
- // Labels are ordered by their first occurrence in the training set.
- // However, for two-class sets with -1/+1 labels and -1 appears first,
- // we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
- //
- if (nr_class == 2 && label[0] == -1 && label[1] == 1)
- {
- swap(label[0], label[1]);
- swap(count[0], count[1]);
- for (i = 0; i < l; i++)
- {
- if (data_label[i] == 0) { data_label[i] = 1; }
- else { data_label[i] = 0; }
- }
- }
-
- int* start = Malloc(int, nr_class);
- start[0] = 0;
- for (i = 1; i < nr_class; i++) { start[i] = start[i - 1] + count[i - 1]; }
- for (i = 0; i < l; i++)
- {
- perm[start[data_label[i]]] = i;
- ++start[data_label[i]];
- }
- start[0] = 0;
- for (i = 1; i < nr_class; i++) { start[i] = start[i - 1] + count[i - 1]; }
-
- *nr_class_ret = nr_class;
- *label_ret = label;
- *start_ret = start;
- *count_ret = count;
- free(data_label);
- }
-
- //
- // Interface functions
- //
- svm_model* svm_train(const svm_problem* prob, const svm_parameter* param)
- {
- svm_model* model = Malloc(svm_model, 1);
- model->param = *param;
- model->free_sv = 0; // XXX
-
- if (param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)
- {
- // regression or one-class-svm
- model->nr_class = 2;
- model->label = nullptr;
- model->nSV = nullptr;
- model->probA = nullptr;
- model->probB = nullptr;
- model->sv_coef = Malloc(double*, 1);
-
- if (param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR))
- {
- model->probA = Malloc(double, 1);
- model->probA[0] = svm_svr_probability(prob, param);
- }
-
- decision_function f = svm_train_one(prob, param, 0, 0);
- model->rho = Malloc(double, 1);
- model->rho[0] = f.rho;
-
- int nSV = 0;
- int i;
- for (i = 0; i < prob->l; i++) { if (fabs(f.alpha[i]) > 0) { ++nSV; } }
- model->l = nSV;
- model->SV = Malloc(svm_node*, nSV);
- model->sv_coef[0] = Malloc(double, nSV);
- model->sv_indices = Malloc(int, nSV);
- int j = 0;
- for (i = 0; i < prob->l; i++)
- {
- if (fabs(f.alpha[i]) > 0)
- {
- model->SV[j] = prob->x[i];
- model->sv_coef[0][j] = f.alpha[i];
- model->sv_indices[j] = i + 1;
- ++j;
- }
- }
-
- free(f.alpha);
- }
- else
- {
- // classification
- int l = prob->l;
- int nr_class;
- int* label = nullptr;
- int* start = nullptr;
- int* count = nullptr;
- int* perm = Malloc(int, l);
-
- // group training data of the same class
- svm_group_classes(prob, &nr_class, &label, &start, &count, perm);
- if (nr_class == 1) { info("WARNING: training data in only one class. See README for details.\n"); }
-
- svm_node** x = Malloc(svm_node*, l);
- int i;
- for (i = 0; i < l; i++) { x[i] = prob->x[perm[i]]; }
-
- // calculate weighted C
-
- double* weighted_C = Malloc(double, nr_class);
- for (i = 0; i < nr_class; i++) { weighted_C[i] = param->C; }
- for (i = 0; i < param->nr_weight; i++)
- {
- int j;
- for (j = 0; j < nr_class; j++) { if (param->weight_label[i] == label[j]) { break; } }
- if (j == nr_class) { fprintf(stderr, "WARNING: class label %d specified in weight is not found\n", param->weight_label[i]); }
- else { weighted_C[j] *= param->weight[i]; }
- }
-
- // train k*(k-1)/2 models
-
- bool* nonzero = Malloc(bool, l);
- for (i = 0; i < l; i++) { nonzero[i] = false; }
- decision_function* f = Malloc(decision_function, nr_class * (nr_class - 1) / 2);
-
- double *probA = nullptr, *probB = nullptr;
- if (param->probability)
- {
- probA = Malloc(double, nr_class * (nr_class - 1) / 2);
- probB = Malloc(double, nr_class * (nr_class - 1) / 2);
- }
-
- int p = 0;
- for (i = 0; i < nr_class; i++)
- {
- for (int j = i + 1; j < nr_class; j++)
- {
- svm_problem sub_prob;
- int si = start[i], sj = start[j];
- int ci = count[i], cj = count[j];
- sub_prob.l = ci + cj;
- sub_prob.x = Malloc(svm_node*, sub_prob.l);
- sub_prob.y = Malloc(double, sub_prob.l);
- int k;
- for (k = 0; k < ci; k++)
- {
- sub_prob.x[k] = x[si + k];
- sub_prob.y[k] = +1;
- }
- for (k = 0; k < cj; k++)
- {
- sub_prob.x[ci + k] = x[sj + k];
- sub_prob.y[ci + k] = -1;
- }
-
- if (param->probability) { svm_binary_svc_probability(&sub_prob, param, weighted_C[i], weighted_C[j], probA[p], probB[p]); }
-
- f[p] = svm_train_one(&sub_prob, param, weighted_C[i], weighted_C[j]);
- for (k = 0; k < ci; k++) { if (!nonzero[si + k] && fabs(f[p].alpha[k]) > 0) { nonzero[si + k] = true; } }
- for (k = 0; k < cj; k++) { if (!nonzero[sj + k] && fabs(f[p].alpha[ci + k]) > 0) { nonzero[sj + k] = true; } }
- free(sub_prob.x);
- free(sub_prob.y);
- ++p;
- }
- }
-
- // build output
-
- model->nr_class = nr_class;
-
- model->label = Malloc(int, nr_class);
- for (i = 0; i < nr_class; i++) { model->label[i] = label[i]; }
-
- model->rho = Malloc(double, nr_class * (nr_class - 1) / 2);
- for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model->rho[i] = f[i].rho; }
-
- if (param->probability)
- {
- model->probA = Malloc(double, nr_class * (nr_class - 1) / 2);
- model->probB = Malloc(double, nr_class * (nr_class - 1) / 2);
- for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
- {
- model->probA[i] = probA[i];
- model->probB[i] = probB[i];
- }
- }
- else
- {
- model->probA = nullptr;
- model->probB = nullptr;
- }
-
- int total_sv = 0;
- int* nz_count = Malloc(int, nr_class);
- model->nSV = Malloc(int, nr_class);
- for (i = 0; i < nr_class; i++)
- {
- int nSV = 0;
- for (int j = 0; j < count[i]; j++)
- {
- if (nonzero[start[i] + j])
- {
- ++nSV;
- ++total_sv;
- }
- }
- model->nSV[i] = nSV;
- nz_count[i] = nSV;
- }
-
- info("Total nSV = %d\n", total_sv);
-
- model->l = total_sv;
- model->SV = Malloc(svm_node*, total_sv);
- model->sv_indices = Malloc(int, total_sv);
- p = 0;
- for (i = 0; i < l; i++)
- {
- if (nonzero[i])
- {
- model->SV[p] = x[i];
- model->sv_indices[p++] = perm[i] + 1;
- }
- }
-
- int* nz_start = Malloc(int, nr_class);
- nz_start[0] = 0;
- for (i = 1; i < nr_class; i++) { nz_start[i] = nz_start[i - 1] + nz_count[i - 1]; }
-
- model->sv_coef = Malloc(double*, nr_class - 1);
- for (i = 0; i < nr_class - 1; i++) { model->sv_coef[i] = Malloc(double, total_sv); }
-
- p = 0;
- for (i = 0; i < nr_class; i++)
- {
- for (int j = i + 1; j < nr_class; j++)
- {
- // classifier (i,j): coefficients with
- // i are in sv_coef[j-1][nz_start[i]...],
- // j are in sv_coef[i][nz_start[j]...]
-
- int si = start[i];
- int sj = start[j];
- int ci = count[i];
- int cj = count[j];
-
- int q = nz_start[i];
- int k;
- for (k = 0; k < ci; k++) { if (nonzero[si + k]) { model->sv_coef[j - 1][q++] = f[p].alpha[k]; } }
- q = nz_start[j];
- for (k = 0; k < cj; k++) { if (nonzero[sj + k]) { model->sv_coef[i][q++] = f[p].alpha[ci + k]; } }
- ++p;
- }
- }
-
- free(label);
- free(probA);
- free(probB);
- free(count);
- free(perm);
- free(start);
- free(x);
- free(weighted_C);
- free(nonzero);
- for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { free(f[i].alpha); }
- free(f);
- free(nz_count);
- free(nz_start);
- }
- return model;
- }
-
- // Stratified cross validation
- void svm_cross_validation(const svm_problem* prob, const svm_parameter* param, int nr_fold, double* target)
- {
- int i;
- const int l = prob->l;
- int* perm = Malloc(int, l);
- int nr_class;
- if (nr_fold > l)
- {
- nr_fold = l;
- fprintf(stderr, "WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
- }
- int* fold_start = Malloc(int, nr_fold + 1);
- // stratified cv may not give leave-one-out rate
- // Each class to l folds -> some folds may have zero elements
- if ((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l)
- {
- int* start = nullptr;
- int* label = nullptr;
- int* count = nullptr;
- svm_group_classes(prob, &nr_class, &label, &start, &count, perm);
-
- // random shuffle and then data grouped by fold using the array perm
- int* fold_count = Malloc(int, nr_fold);
- int c;
- int* index = Malloc(int, l);
- for (i = 0; i < l; i++) { index[i] = perm[i]; }
- for (c = 0; c < nr_class; c++)
- {
- for (i = 0; i < count[c]; i++)
- {
- const int j = i + rand() % (count[c] - i);
- swap(index[start[c] + j], index[start[c] + i]);
- }
- }
- for (i = 0; i < nr_fold; i++)
- {
- fold_count[i] = 0;
- for (c = 0; c < nr_class; c++) { fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold; }
- }
- fold_start[0] = 0;
- for (i = 1; i <= nr_fold; i++) { fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; }
- for (c = 0; c < nr_class; c++)
- {
- for (i = 0; i < nr_fold; i++)
- {
- const int begin = start[c] + i * count[c] / nr_fold;
- const int end = start[c] + (i + 1) * count[c] / nr_fold;
- for (int j = begin; j < end; j++)
- {
- perm[fold_start[i]] = index[j];
- fold_start[i]++;
- }
- }
- }
- fold_start[0] = 0;
- for (i = 1; i <= nr_fold; i++) { fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; }
- free(start);
- free(label);
- free(count);
- free(index);
- free(fold_count);
- }
- else
- {
- for (i = 0; i < l; i++) { perm[i] = i; }
- for (i = 0; i < l; i++)
- {
- const int j = i + rand() % (l - i);
- swap(perm[i], perm[j]);
- }
- for (i = 0; i <= nr_fold; i++) { fold_start[i] = i * l / nr_fold; }
- }
-
- for (i = 0; i < nr_fold; i++)
- {
- const int begin = fold_start[i];
- const int end = fold_start[i + 1];
- int j;
- struct svm_problem subprob;
-
- subprob.l = l - (end - begin);
- subprob.x = Malloc(struct svm_node*, subprob.l);
- subprob.y = Malloc(double, subprob.l);
-
- int k = 0;
- for (j = 0; j < begin; j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- for (j = end; j < l; j++)
- {
- subprob.x[k] = prob->x[perm[j]];
- subprob.y[k] = prob->y[perm[j]];
- ++k;
- }
- struct svm_model* submodel = svm_train(&subprob, param);
- if (param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC))
- {
- double* prob_estimates = Malloc(double, svm_get_nr_class(submodel));
- for (j = begin; j < end; j++) { target[perm[j]] = svm_predict_probability(submodel, prob->x[perm[j]], prob_estimates); }
- free(prob_estimates);
- }
- else { for (j = begin; j < end; j++) { target[perm[j]] = svm_predict(submodel, prob->x[perm[j]]); } }
- svm_free_and_destroy_model(&submodel);
- free(subprob.x);
- free(subprob.y);
- }
- free(fold_start);
- free(perm);
- }
-
-
- int svm_get_svm_type(const svm_model* model) { return model->param.svm_type; }
- int svm_get_nr_class(const svm_model* model) { return model->nr_class; }
-
- void svm_get_labels(const svm_model* model, int* label)
- {
- if (model->label != nullptr) { for (int i = 0; i < model->nr_class; i++) { label[i] = model->label[i]; } }
- }
-
- void svm_get_sv_indices(const svm_model* model, int* indices)
- {
- if (model->sv_indices != nullptr) { for (int i = 0; i < model->l; i++) { indices[i] = model->sv_indices[i]; } }
- }
-
- int svm_get_nr_sv(const svm_model* model) { return model->l; }
-
- double svm_get_svr_probability(const svm_model* model)
- {
- if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA != nullptr) { return model->probA[0]; }
- fprintf(stderr, "Model doesn't contain information for SVR probability inference\n");
- return 0;
- }
-
- double svm_predict_values(const svm_model* model, const svm_node* x, double* dec_values)
- {
- int i;
- if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR)
- {
- double* sv_coef = model->sv_coef[0];
- double sum = 0;
- for (i = 0; i < model->l; i++) { sum += sv_coef[i] * Kernel::k_function(x, model->SV[i], model->param); }
- sum -= model->rho[0];
- *dec_values = sum;
-
- if (model->param.svm_type == ONE_CLASS) { return (sum > 0) ? 1 : -1; }
- return sum;
- }
- const int nr_class = model->nr_class;
- const int l = model->l;
-
- double* kvalue = Malloc(double, l);
- for (i = 0; i < l; i++) { kvalue[i] = Kernel::k_function(x, model->SV[i], model->param); }
-
- int* start = Malloc(int, nr_class);
- start[0] = 0;
- for (i = 1; i < nr_class; i++) { start[i] = start[i - 1] + model->nSV[i - 1]; }
-
- int* vote = Malloc(int, nr_class);
- for (i = 0; i < nr_class; i++) { vote[i] = 0; }
-
- int p = 0;
- for (i = 0; i < nr_class; i++)
- {
- for (int j = i + 1; j < nr_class; j++)
- {
- double sum = 0;
- const int si = start[i];
- const int sj = start[j];
- const int ci = model->nSV[i];
- const int cj = model->nSV[j];
-
- int k;
- double* coef1 = model->sv_coef[j - 1];
- double* coef2 = model->sv_coef[i];
- for (k = 0; k < ci; k++) { sum += coef1[si + k] * kvalue[si + k]; }
- for (k = 0; k < cj; k++) { sum += coef2[sj + k] * kvalue[sj + k]; }
- sum -= model->rho[p];
- dec_values[p] = sum;
-
- if (dec_values[p] > 0) { ++vote[i]; }
- else { ++vote[j]; }
- p++;
- }
- }
-
- int vote_max_idx = 0;
- for (i = 1; i < nr_class; i++) { if (vote[i] > vote[vote_max_idx]) { vote_max_idx = i; } }
-
- free(kvalue);
- free(start);
- free(vote);
- return model->label[vote_max_idx];
- }
-
- double svm_predict(const svm_model* model, const svm_node* x)
- {
- const int nr_class = model->nr_class;
- double* dec_values;
- if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { dec_values = Malloc(double, 1); }
- else { dec_values = Malloc(double, nr_class * (nr_class - 1) / 2); }
- const double pred_result = svm_predict_values(model, x, dec_values);
- free(dec_values);
- return pred_result;
- }
-
- double svm_predict_probability(const svm_model* model, const svm_node* x, double* prob_estimates)
- {
- if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != nullptr && model->probB != nullptr)
- {
- int i;
- const int nr_class = model->nr_class;
- double* dec_values = Malloc(double, nr_class * (nr_class - 1) / 2);
- svm_predict_values(model, x, dec_values);
-
- const double min_prob = 1e-7;
- double** pairwise_prob = Malloc(double*, nr_class);
- for (i = 0; i < nr_class; i++) { pairwise_prob[i] = Malloc(double, nr_class); }
- int k = 0;
- for (i = 0; i < nr_class; i++)
- {
- for (int j = i + 1; j < nr_class; j++)
- {
- pairwise_prob[i][j] = min(max(sigmoid_predict(dec_values[k], model->probA[k], model->probB[k]), min_prob), 1 - min_prob);
- pairwise_prob[j][i] = 1 - pairwise_prob[i][j];
- k++;
- }
- }
- if (nr_class == 2)
- {
- prob_estimates[0] = pairwise_prob[0][1];
- prob_estimates[1] = pairwise_prob[1][0];
- }
- else { multiclass_probability(nr_class, pairwise_prob, prob_estimates); }
-
- int prob_max_idx = 0;
- for (i = 1; i < nr_class; i++) { if (prob_estimates[i] > prob_estimates[prob_max_idx]) { prob_max_idx = i; } }
- for (i = 0; i < nr_class; i++) { free(pairwise_prob[i]); }
- free(dec_values);
- free(pairwise_prob);
- return model->label[prob_max_idx];
- }
- return svm_predict(model, x);
- }
-
- static const char* svm_type_table[] = { "c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr", nullptr };
- static const char* kernel_type_table[] = { "linear", "polynomial", "rbf", "sigmoid", "precomputed", nullptr };
-
- int svm_save_model(const char* model_file_name, const svm_model* model)
- {
- FILE* fp = fopen(model_file_name, "w");
- if (fp == nullptr) { return -1; }
-
- char* old_locale = setlocale(LC_ALL, nullptr);
- if (old_locale) { old_locale = strdup(old_locale); }
- setlocale(LC_ALL, "C");
-
- const svm_parameter& param = model->param;
-
- fprintf(fp, "svm_type %s\n", svm_type_table[param.svm_type]);
- fprintf(fp, "kernel_type %s\n", kernel_type_table[param.kernel_type]);
-
- if (param.kernel_type == POLY) { fprintf(fp, "degree %d\n", param.degree); }
- if (param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) { fprintf(fp, "gamma %.17g\n", param.gamma); }
- if (param.kernel_type == POLY || param.kernel_type == SIGMOID) { fprintf(fp, "coef0 %.17g\n", param.coef0); }
-
- const int nr_class = model->nr_class;
- const int l = model->l;
- fprintf(fp, "nr_class %d\n", nr_class);
- fprintf(fp, "total_sv %d\n", l);
-
- {
- fprintf(fp, "rho");
- for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) { fprintf(fp, " %.17g", model->rho[i]); }
- fprintf(fp, "\n");
- }
-
- if (model->label)
- {
- fprintf(fp, "label");
- for (int i = 0; i < nr_class; i++) { fprintf(fp, " %d", model->label[i]); }
- fprintf(fp, "\n");
- }
-
- if (model->probA) // regression has probA only
- {
- fprintf(fp, "probA");
- for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) { fprintf(fp, " %.17g", model->probA[i]); }
- fprintf(fp, "\n");
- }
- if (model->probB)
- {
- fprintf(fp, "probB");
- for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) { fprintf(fp, " %.17g", model->probB[i]); }
- fprintf(fp, "\n");
- }
-
- if (model->nSV)
- {
- fprintf(fp, "nr_sv");
- for (int i = 0; i < nr_class; i++) { fprintf(fp, " %d", model->nSV[i]); }
- fprintf(fp, "\n");
- }
-
- fprintf(fp, "SV\n");
- const double* const* sv_coef = model->sv_coef;
- const svm_node* const* SV = model->SV;
-
- for (int i = 0; i < l; i++)
- {
- for (int j = 0; j < nr_class - 1; j++) { fprintf(fp, "%.17g ", sv_coef[j][i]); }
-
- const svm_node* p = SV[i];
-
- if (param.kernel_type == PRECOMPUTED) { fprintf(fp, "0:%d ", int(p->value)); }
- else
- {
- while (p->index != -1)
- {
- fprintf(fp, "%d:%.8g ", p->index, p->value);
- p++;
- }
- }
- fprintf(fp, "\n");
- }
-
- setlocale(LC_ALL, old_locale);
- free(old_locale);
-
- if (ferror(fp) != 0 || fclose(fp) != 0) { return -1; }
- return 0;
- }
-
- static char* line = nullptr;
- static int max_line_len;
-
- static char* readline(FILE* input)
- {
- if (fgets(line, max_line_len, input) == nullptr) { return nullptr; }
-
- while (strrchr(line, '\n') == nullptr)
- {
- max_line_len *= 2;
- line = (char*)realloc(line, max_line_len);
- const int len = int(strlen(line));
- if (fgets(line + len, max_line_len - len, input) == nullptr) { break; }
- }
- return line;
- }
-
- //
- // FSCANF helps to handle fscanf failures.
- // Its do-while block avoids the ambiguity when
- // if (...)
- // FSCANF();
- // is used
- //
- #define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return false; }while(0)
- bool read_model_header(FILE* fp, svm_model* model)
- {
- svm_parameter& param = model->param;
- // parameters for training only won't be assigned, but arrays are assigned as NULL for safety
- param.nr_weight = 0;
- param.weight_label = nullptr;
- param.weight = nullptr;
-
- char cmd[81];
- while (true)
- {
- FSCANF(fp, "%80s", cmd);
-
- if (strcmp(cmd, "svm_type") == 0)
- {
- FSCANF(fp, "%80s", cmd);
- int i;
- for (i = 0; svm_type_table[i]; i++)
- {
- if (strcmp(svm_type_table[i], cmd) == 0)
- {
- param.svm_type = i;
- break;
- }
- }
- if (svm_type_table[i] == nullptr)
- {
- fprintf(stderr, "unknown svm type.\n");
- return false;
- }
- }
- else if (strcmp(cmd, "kernel_type") == 0)
- {
- FSCANF(fp, "%80s", cmd);
- int i;
- for (i = 0; kernel_type_table[i]; i++)
- {
- if (strcmp(kernel_type_table[i], cmd) == 0)
- {
- param.kernel_type = i;
- break;
- }
- }
- if (kernel_type_table[i] == nullptr)
- {
- fprintf(stderr, "unknown kernel function.\n");
- return false;
- }
- }
- else if (strcmp(cmd, "degree") == 0) { FSCANF(fp, "%d", ¶m.degree); }
- else if (strcmp(cmd, "gamma") == 0) { FSCANF(fp, "%lf", ¶m.gamma); }
- else if (strcmp(cmd, "coef0") == 0) { FSCANF(fp, "%lf", ¶m.coef0); }
- else if (strcmp(cmd, "nr_class") == 0) { FSCANF(fp, "%d", &model->nr_class); }
- else if (strcmp(cmd, "total_sv") == 0) { FSCANF(fp, "%d", &model->l); }
- else if (strcmp(cmd, "rho") == 0)
- {
- const int n = model->nr_class * (model->nr_class - 1) / 2;
- model->rho = Malloc(double, n);
- for (int i = 0; i < n; i++) { FSCANF(fp, "%lf", &model->rho[i]); }
- }
- else if (strcmp(cmd, "label") == 0)
- {
- const int n = model->nr_class;
- model->label = Malloc(int, n);
- for (int i = 0; i < n; i++) { FSCANF(fp, "%d", &model->label[i]); }
- }
- else if (strcmp(cmd, "probA") == 0)
- {
- const int n = model->nr_class * (model->nr_class - 1) / 2;
- model->probA = Malloc(double, n);
- for (int i = 0; i < n; i++) { FSCANF(fp, "%lf", &model->probA[i]); }
- }
- else if (strcmp(cmd, "probB") == 0)
- {
- const int n = model->nr_class * (model->nr_class - 1) / 2;
- model->probB = Malloc(double, n);
- for (int i = 0; i < n; i++) { FSCANF(fp, "%lf", &model->probB[i]); }
- }
- else if (strcmp(cmd, "nr_sv") == 0)
- {
- const int n = model->nr_class;
- model->nSV = Malloc(int, n);
- for (int i = 0; i < n; i++) { FSCANF(fp, "%d", &model->nSV[i]); }
- }
- else if (strcmp(cmd, "SV") == 0)
- {
- while (true)
- {
- const int c = getc(fp);
- if (c == EOF || c == '\n') { break; }
- }
- break;
- }
- else
- {
- fprintf(stderr, "unknown text in model file: [%s]\n", cmd);
- return false;
- }
- }
-
- return true;
- }
-
- svm_model* svm_load_model(const char* model_file_name)
- {
- FILE* fp = fopen(model_file_name, "rb");
- if (fp == nullptr) { return nullptr; }
-
- char* old_locale = setlocale(LC_ALL, nullptr);
- if (old_locale) { old_locale = strdup(old_locale); }
- setlocale(LC_ALL, "C");
-
- // read parameters
-
- svm_model* model = Malloc(svm_model, 1);
- model->rho = nullptr;
- model->probA = nullptr;
- model->probB = nullptr;
- model->sv_indices = nullptr;
- model->label = nullptr;
- model->nSV = nullptr;
-
- // read header
- if (!read_model_header(fp, model))
- {
- fprintf(stderr, "ERROR: fscanf failed to read model\n");
- setlocale(LC_ALL, old_locale);
- free(old_locale);
- free(model->rho);
- free(model->label);
- free(model->nSV);
- free(model);
- return nullptr;
- }
-
- // read sv_coef and SV
-
- int elements = 0;
- const long pos = ftell(fp);
-
- max_line_len = 1024;
- line = Malloc(char, max_line_len);
- char *p, *endptr;
-
- while (readline(fp) != nullptr)
- {
- p = strtok(line, ":");
- while (true)
- {
- p = strtok(nullptr, ":");
- if (p == nullptr) { break; }
- ++elements;
- }
- }
- elements += model->l;
-
- fseek(fp, pos, SEEK_SET);
-
- const int m = model->nr_class - 1;
- const int l = model->l;
- model->sv_coef = Malloc(double*, m);
- int i;
- for (i = 0; i < m; i++) { model->sv_coef[i] = Malloc(double, l); }
- model->SV = Malloc(svm_node*, l);
- svm_node* x_space = nullptr;
- if (l > 0) { x_space = Malloc(svm_node, elements); }
-
- int j = 0;
- for (i = 0; i < l; i++)
- {
- readline(fp);
- model->SV[i] = &x_space[j];
-
- p = strtok(line, " \t");
- model->sv_coef[0][i] = strtod(p, &endptr);
- for (int k = 1; k < m; k++)
- {
- p = strtok(nullptr, " \t");
- model->sv_coef[k][i] = strtod(p, &endptr);
- }
-
- while (true)
- {
- char* idx = strtok(nullptr, ":");
- char* val = strtok(nullptr, " \t");
-
- if (val == nullptr) { break; }
- x_space[j].index = int(strtol(idx, &endptr, 10));
- x_space[j].value = strtod(val, &endptr);
-
- ++j;
- }
- x_space[j++].index = -1;
- }
- free(line);
-
- setlocale(LC_ALL, old_locale);
- free(old_locale);
-
- if (ferror(fp) != 0 || fclose(fp) != 0) { return nullptr; }
-
- model->free_sv = 1; // XXX
- return model;
- }
-
- void svm_free_model_content(svm_model* model_ptr)
- {
- if (model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != nullptr) { free((void*)(model_ptr->SV[0])); }
- if (model_ptr->sv_coef) { for (int i = 0; i < model_ptr->nr_class - 1; i++) { free(model_ptr->sv_coef[i]); } }
-
- free(model_ptr->SV);
- model_ptr->SV = nullptr;
-
- free(model_ptr->sv_coef);
- model_ptr->sv_coef = nullptr;
-
- free(model_ptr->rho);
- model_ptr->rho = nullptr;
-
- free(model_ptr->label);
- model_ptr->label = nullptr;
-
- free(model_ptr->probA);
- model_ptr->probA = nullptr;
-
- free(model_ptr->probB);
- model_ptr->probB = nullptr;
-
- free(model_ptr->sv_indices);
- model_ptr->sv_indices = nullptr;
-
- free(model_ptr->nSV);
- model_ptr->nSV = nullptr;
- }
-
- void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
- {
- if (model_ptr_ptr != nullptr && *model_ptr_ptr != nullptr)
- {
- svm_free_model_content(*model_ptr_ptr);
- free(*model_ptr_ptr);
- *model_ptr_ptr = nullptr;
- }
- }
-
- void svm_destroy_param(svm_parameter* param)
- {
- free(param->weight_label);
- free(param->weight);
- }
-
- const char* svm_check_parameter(const svm_problem* prob, const svm_parameter* param)
- {
- // svm_type
-
- const int svm_type = param->svm_type;
- if (svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) { return "unknown svm type"; }
-
- // kernel_type, degree
-
- const int kernel_type = param->kernel_type;
- if (kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED)
- {
- return "unknown kernel type";
- }
-
- if ((kernel_type == POLY || kernel_type == RBF || kernel_type == SIGMOID) && param->gamma < 0) { return "gamma < 0"; }
- if (kernel_type == POLY && param->degree < 0) { return "degree of polynomial kernel < 0"; }
-
- // cache_size,eps,C,nu,p,shrinking
-
- if (param->cache_size <= 0) { return "cache_size <= 0"; }
- if (param->eps <= 0) { return "eps <= 0"; }
- if (svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) { if (param->C <= 0) { return "C <= 0"; } }
- if (svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) { if (param->nu <= 0 || param->nu > 1) { return "nu <= 0 or nu > 1"; } }
- if (svm_type == EPSILON_SVR) { if (param->p < 0) { return "p < 0"; } }
- if (param->shrinking != 0 && param->shrinking != 1) { return "shrinking != 0 and shrinking != 1"; }
- if (param->probability != 0 && param->probability != 1) { return "probability != 0 and probability != 1"; }
- if (param->probability == 1 && svm_type == ONE_CLASS) { return "one-class SVM probability output not supported yet"; }
-
-
- // check whether nu-svc is feasible
-
- if (svm_type == NU_SVC)
- {
- const int l = prob->l;
- int max_nr_class = 16;
- int nr_class = 0;
- int* label = Malloc(int, max_nr_class);
- int* count = Malloc(int, max_nr_class);
-
- int i;
- for (i = 0; i < l; i++)
- {
- const int this_label = int(prob->y[i]);
- int j;
- for (j = 0; j < nr_class; j++)
- {
- if (this_label == label[j])
- {
- ++count[j];
- break;
- }
- }
- if (j == nr_class)
- {
- if (nr_class == max_nr_class)
- {
- max_nr_class *= 2;
- label = (int*)realloc(label, max_nr_class * sizeof(int));
- count = (int*)realloc(count, max_nr_class * sizeof(int));
- }
- label[nr_class] = this_label;
- count[nr_class] = 1;
- ++nr_class;
- }
- }
-
- for (i = 0; i < nr_class; i++)
- {
- const int n1 = count[i];
- for (int j = i + 1; j < nr_class; j++)
- {
- const int n2 = count[j];
- if (param->nu * (n1 + n2) / 2 > min(n1, n2))
- {
- free(label);
- free(count);
- return "specified nu is infeasible";
- }
- }
- }
- free(label);
- free(count);
- }
-
- return nullptr;
- }
-
- int svm_check_probability_model(const svm_model* model)
- {
- return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != nullptr && model->probB != nullptr)
- || ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA != nullptr);
- }
-
- void svm_set_print_string_function(void (*print_func)(const char*))
- {
- if (print_func == nullptr) { svm_print_string = &print_string_stdout; }
- else { svm_print_string = print_func; }
- }
|