2876 lines
69 KiB
C++
2876 lines
69 KiB
C++
|
#include <math.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <ctype.h>
|
||
|
#include <float.h>
|
||
|
#include <string.h>
|
||
|
#include <stdarg.h>
|
||
|
#include <limits.h>
|
||
|
#include <locale.h>
|
||
|
#include "svm.h"
|
||
|
|
||
|
int libsvm_version = LIBSVM_VERSION;
|
||
|
|
||
|
typedef float Qfloat;
|
||
|
typedef signed char schar;
|
||
|
|
||
|
#ifndef min
|
||
|
template <class T>
|
||
|
static T min(const T x, const T y) { return (x < y) ? x : y; }
|
||
|
#endif
|
||
|
|
||
|
#ifndef max
|
||
|
template <class T>
|
||
|
static T max(const T x, const T y) { return (x > y) ? x : y; }
|
||
|
#endif
|
||
|
|
||
|
template <class T>
|
||
|
static void swap(T& x, T& y)
|
||
|
{
|
||
|
T t = x;
|
||
|
x = y;
|
||
|
y = t;
|
||
|
}
|
||
|
|
||
|
template <class S, class T>
|
||
|
static void clone(T*& dst, S* src, const int n)
|
||
|
{
|
||
|
dst = new T[n];
|
||
|
memcpy((void*)dst, (void*)src, sizeof(T) * n);
|
||
|
}
|
||
|
|
||
|
static double powi(const double base, const int times)
|
||
|
{
|
||
|
double tmp = base, ret = 1.0;
|
||
|
|
||
|
for (int t = times; t > 0; t /= 2)
|
||
|
{
|
||
|
if (t % 2 == 1) { ret *= tmp; }
|
||
|
tmp = tmp * tmp;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
#define INF HUGE_VAL
|
||
|
#define TAU 1e-12
|
||
|
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
|
||
|
|
||
|
static void print_string_stdout(const char* s)
|
||
|
{
|
||
|
fputs(s, stdout);
|
||
|
fflush(stdout);
|
||
|
}
|
||
|
static void (*svm_print_string)(const char*) = &print_string_stdout;
|
||
|
#if 0
|
||
|
static void info(const char* fmt, ...)
|
||
|
{
|
||
|
char buf[BUFSIZ];
|
||
|
va_list ap;
|
||
|
va_start(ap, fmt);
|
||
|
vsprintf(buf, fmt, ap);
|
||
|
va_end(ap);
|
||
|
(*svm_print_string)(buf);
|
||
|
}
|
||
|
#else
|
||
|
static void info(const char* /*fmt*/, ...) {}
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// Kernel Cache
|
||
|
//
|
||
|
// l is the number of total data items
|
||
|
// size is the cache size limit in bytes
|
||
|
//
|
||
|
class Cache
|
||
|
{
|
||
|
public:
|
||
|
Cache(const int l_, const long int size_);
|
||
|
~Cache();
|
||
|
|
||
|
// request data [0,len)
|
||
|
// return some position p where [p,len) need to be filled
|
||
|
// (p >= len if nothing needs to be filled)
|
||
|
int get_data(const int index, Qfloat** data, int len);
|
||
|
void swap_index(int i, int j);
|
||
|
private:
|
||
|
int l;
|
||
|
long int size;
|
||
|
|
||
|
struct head_t
|
||
|
{
|
||
|
head_t *prev, *next; // a circular list
|
||
|
Qfloat* data;
|
||
|
int len; // data[0,len) is cached in this entry
|
||
|
};
|
||
|
|
||
|
head_t* head;
|
||
|
head_t lru_head;
|
||
|
void lru_delete(head_t* h);
|
||
|
void lru_insert(head_t* h);
|
||
|
};
|
||
|
|
||
|
Cache::Cache(const int l_, const long int size_) : l(l_), size(size_)
|
||
|
{
|
||
|
head = (head_t*)calloc(l, sizeof(head_t)); // initialized to 0
|
||
|
size /= sizeof(Qfloat);
|
||
|
size -= l * sizeof(head_t) / sizeof(Qfloat);
|
||
|
size = max(size, 2 * long(l)); // cache must be large enough for two columns
|
||
|
lru_head.next = lru_head.prev = &lru_head;
|
||
|
}
|
||
|
|
||
|
Cache::~Cache()
|
||
|
{
|
||
|
for (head_t* h = lru_head.next; h != &lru_head; h = h->next) { free(h->data); }
|
||
|
free(head);
|
||
|
}
|
||
|
|
||
|
void Cache::lru_delete(head_t* h)
|
||
|
{
|
||
|
// delete from current location
|
||
|
h->prev->next = h->next;
|
||
|
h->next->prev = h->prev;
|
||
|
}
|
||
|
|
||
|
void Cache::lru_insert(head_t* h)
|
||
|
{
|
||
|
// insert to last position
|
||
|
h->next = &lru_head;
|
||
|
h->prev = lru_head.prev;
|
||
|
h->prev->next = h;
|
||
|
h->next->prev = h;
|
||
|
}
|
||
|
|
||
|
int Cache::get_data(const int index, Qfloat** data, int len)
|
||
|
{
|
||
|
head_t* h = &head[index];
|
||
|
if (h->len) { lru_delete(h); }
|
||
|
const int more = len - h->len;
|
||
|
|
||
|
if (more > 0)
|
||
|
{
|
||
|
// free old space
|
||
|
while (size < more)
|
||
|
{
|
||
|
head_t* old = lru_head.next;
|
||
|
lru_delete(old);
|
||
|
free(old->data);
|
||
|
size += old->len;
|
||
|
old->data = nullptr;
|
||
|
old->len = 0;
|
||
|
}
|
||
|
|
||
|
// allocate new space
|
||
|
h->data = (Qfloat*)realloc(h->data, sizeof(Qfloat) * len);
|
||
|
size -= more;
|
||
|
swap(h->len, len);
|
||
|
}
|
||
|
|
||
|
lru_insert(h);
|
||
|
*data = h->data;
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
void Cache::swap_index(int i, int j)
|
||
|
{
|
||
|
if (i == j) { return; }
|
||
|
|
||
|
if (head[i].len) { lru_delete(&head[i]); }
|
||
|
if (head[j].len) { lru_delete(&head[j]); }
|
||
|
swap(head[i].data, head[j].data);
|
||
|
swap(head[i].len, head[j].len);
|
||
|
if (head[i].len) { lru_insert(&head[i]); }
|
||
|
if (head[j].len) { lru_insert(&head[j]); }
|
||
|
|
||
|
if (i > j) { swap(i, j); }
|
||
|
for (head_t* h = lru_head.next; h != &lru_head; h = h->next)
|
||
|
{
|
||
|
if (h->len > i)
|
||
|
{
|
||
|
if (h->len > j) { swap(h->data[i], h->data[j]); }
|
||
|
else
|
||
|
{
|
||
|
// give up
|
||
|
lru_delete(h);
|
||
|
free(h->data);
|
||
|
size += h->len;
|
||
|
h->data = nullptr;
|
||
|
h->len = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Kernel evaluation
|
||
|
//
|
||
|
// the static method k_function is for doing single kernel evaluation
|
||
|
// the constructor of Kernel prepares to calculate the l*l kernel matrix
|
||
|
// the member function get_Q is for getting one column from the Q Matrix
|
||
|
//
|
||
|
class QMatrix
|
||
|
{
|
||
|
public:
|
||
|
virtual Qfloat* get_Q(int column, int len) const = 0;
|
||
|
virtual double* get_QD() const = 0;
|
||
|
virtual void swap_index(int i, int j) const = 0;
|
||
|
virtual ~QMatrix() {}
|
||
|
};
|
||
|
|
||
|
class Kernel : public QMatrix
|
||
|
{
|
||
|
public:
|
||
|
Kernel(const int l, svm_node* const* x_, const svm_parameter& param);
|
||
|
~Kernel() override;
|
||
|
|
||
|
static double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param);
|
||
|
Qfloat* get_Q(int column, int len) const override = 0;
|
||
|
double* get_QD() const override = 0;
|
||
|
void swap_index(const int i, const int j) const override
|
||
|
// no so const...
|
||
|
{
|
||
|
swap(x[i], x[j]);
|
||
|
if (x_square) { swap(x_square[i], x_square[j]); }
|
||
|
}
|
||
|
protected:
|
||
|
|
||
|
double (Kernel::* kernel_function)(int i, int j) const;
|
||
|
|
||
|
private:
|
||
|
const svm_node** x;
|
||
|
double* x_square;
|
||
|
|
||
|
// svm_parameter
|
||
|
const int kernel_type;
|
||
|
const int degree;
|
||
|
const double gamma;
|
||
|
const double coef0;
|
||
|
|
||
|
static double dot(const svm_node* px, const svm_node* py);
|
||
|
double kernel_linear(const int i, const int j) const { return dot(x[i], x[j]); }
|
||
|
double kernel_poly(const int i, const int j) const { return powi(gamma * dot(x[i], x[j]) + coef0, degree); }
|
||
|
double kernel_rbf(const int i, const int j) const { return exp(-gamma * (x_square[i] + x_square[j] - 2 * dot(x[i], x[j]))); }
|
||
|
double kernel_sigmoid(const int i, const int j) const { return tanh(gamma * dot(x[i], x[j]) + coef0); }
|
||
|
double kernel_precomputed(const int i, const int j) const { return x[i][int(x[j][0].value)].value; }
|
||
|
};
|
||
|
|
||
|
Kernel::Kernel(const int l, svm_node* const* x_, const svm_parameter& param)
|
||
|
: kernel_type(param.kernel_type), degree(param.degree), gamma(param.gamma), coef0(param.coef0)
|
||
|
{
|
||
|
switch (kernel_type)
|
||
|
{
|
||
|
case LINEAR:
|
||
|
kernel_function = &Kernel::kernel_linear;
|
||
|
break;
|
||
|
case POLY:
|
||
|
kernel_function = &Kernel::kernel_poly;
|
||
|
break;
|
||
|
case RBF:
|
||
|
kernel_function = &Kernel::kernel_rbf;
|
||
|
break;
|
||
|
case SIGMOID:
|
||
|
kernel_function = &Kernel::kernel_sigmoid;
|
||
|
break;
|
||
|
case PRECOMPUTED:
|
||
|
kernel_function = &Kernel::kernel_precomputed;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
clone(x, x_, l);
|
||
|
|
||
|
if (kernel_type == RBF)
|
||
|
{
|
||
|
x_square = new double[l];
|
||
|
for (int i = 0; i < l; i++) { x_square[i] = dot(x[i], x[i]); }
|
||
|
}
|
||
|
else { x_square = nullptr; }
|
||
|
}
|
||
|
|
||
|
Kernel::~Kernel()
|
||
|
{
|
||
|
delete[] x;
|
||
|
delete[] x_square;
|
||
|
}
|
||
|
|
||
|
double Kernel::dot(const svm_node* px, const svm_node* py)
|
||
|
{
|
||
|
double sum = 0;
|
||
|
while (px->index != -1 && py->index != -1)
|
||
|
{
|
||
|
if (px->index == py->index)
|
||
|
{
|
||
|
sum += px->value * py->value;
|
||
|
++px;
|
||
|
++py;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (px->index > py->index) { ++py; }
|
||
|
else { ++px; }
|
||
|
}
|
||
|
}
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
double Kernel::k_function(const svm_node* x, const svm_node* y, const svm_parameter& param)
|
||
|
{
|
||
|
switch (param.kernel_type)
|
||
|
{
|
||
|
case LINEAR:
|
||
|
return dot(x, y);
|
||
|
case POLY:
|
||
|
return powi(param.gamma * dot(x, y) + param.coef0, param.degree);
|
||
|
case RBF:
|
||
|
{
|
||
|
double sum = 0;
|
||
|
while (x->index != -1 && y->index != -1)
|
||
|
{
|
||
|
if (x->index == y->index)
|
||
|
{
|
||
|
const double d = x->value - y->value;
|
||
|
sum += d * d;
|
||
|
++x;
|
||
|
++y;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (x->index > y->index)
|
||
|
{
|
||
|
sum += y->value * y->value;
|
||
|
++y;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sum += x->value * x->value;
|
||
|
++x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (x->index != -1)
|
||
|
{
|
||
|
sum += x->value * x->value;
|
||
|
++x;
|
||
|
}
|
||
|
|
||
|
while (y->index != -1)
|
||
|
{
|
||
|
sum += y->value * y->value;
|
||
|
++y;
|
||
|
}
|
||
|
|
||
|
return exp(-param.gamma * sum);
|
||
|
}
|
||
|
case SIGMOID:
|
||
|
return tanh(param.gamma * dot(x, y) + param.coef0);
|
||
|
case PRECOMPUTED: //x: test (validation), y: SV
|
||
|
return x[int(y->value)].value;
|
||
|
default:
|
||
|
return 0; // Unreachable
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
|
||
|
// Solves:
|
||
|
//
|
||
|
// min 0.5(\alpha^T Q \alpha) + p^T \alpha
|
||
|
//
|
||
|
// y^T \alpha = \delta
|
||
|
// y_i = +1 or -1
|
||
|
// 0 <= alpha_i <= Cp for y_i = 1
|
||
|
// 0 <= alpha_i <= Cn for y_i = -1
|
||
|
//
|
||
|
// Given:
|
||
|
//
|
||
|
// Q, p, y, Cp, Cn, and an initial feasible point \alpha
|
||
|
// l is the size of vectors and matrices
|
||
|
// eps is the stopping tolerance
|
||
|
//
|
||
|
// solution will be put in \alpha, objective value will be put in obj
|
||
|
//
|
||
|
class Solver
|
||
|
{
|
||
|
public:
|
||
|
Solver() {}
|
||
|
virtual ~Solver() {}
|
||
|
|
||
|
struct SolutionInfo
|
||
|
{
|
||
|
double obj;
|
||
|
double rho;
|
||
|
double upper_bound_p;
|
||
|
double upper_bound_n;
|
||
|
double r; // for Solver_NU
|
||
|
};
|
||
|
|
||
|
void Solve(int l, const QMatrix& Q, const double* p_, const schar* y_, double* alpha_, double Cp, double Cn, double eps, SolutionInfo* si, int shrinking);
|
||
|
protected:
|
||
|
enum { LOWER_BOUND, UPPER_BOUND, FREE };
|
||
|
|
||
|
int active_size = 0;
|
||
|
schar* y = nullptr;
|
||
|
double* G = nullptr; // gradient of objective function
|
||
|
|
||
|
char* alpha_status = nullptr; // LOWER_BOUND, UPPER_BOUND, FREE
|
||
|
double* alpha = nullptr;
|
||
|
const QMatrix* Q;
|
||
|
const double* QD;
|
||
|
double eps = 0.0;
|
||
|
double Cp = 0.0, Cn = 0.0;
|
||
|
double* p = nullptr;
|
||
|
int* active_set = nullptr;
|
||
|
double* G_bar = nullptr; // gradient, if we treat free variables as 0
|
||
|
int l = 0.0;
|
||
|
bool unshrink = true; // XXX
|
||
|
|
||
|
double get_C(const int i) { return (y[i] > 0) ? Cp : Cn; }
|
||
|
void update_alpha_status(const int i)
|
||
|
{
|
||
|
if (alpha[i] >= get_C(i)) { alpha_status[i] = UPPER_BOUND; }
|
||
|
else if (alpha[i] <= 0) { alpha_status[i] = LOWER_BOUND; }
|
||
|
else { alpha_status[i] = FREE; }
|
||
|
}
|
||
|
bool is_upper_bound(const int i) { return alpha_status[i] == UPPER_BOUND; }
|
||
|
bool is_lower_bound(const int i) { return alpha_status[i] == LOWER_BOUND; }
|
||
|
bool is_free(const int i) { return alpha_status[i] == FREE; }
|
||
|
void swap_index(const int i, const int j);
|
||
|
void reconstruct_gradient();
|
||
|
virtual int select_working_set(int& out_i, int& out_j);
|
||
|
virtual double calculate_rho();
|
||
|
virtual void do_shrinking();
|
||
|
private:
|
||
|
bool be_shrunk(int i, double Gmax1, double Gmax2);
|
||
|
};
|
||
|
|
||
|
void Solver::swap_index(const int i, const int j)
|
||
|
{
|
||
|
Q->swap_index(i, j);
|
||
|
swap(y[i], y[j]);
|
||
|
swap(G[i], G[j]);
|
||
|
swap(alpha_status[i], alpha_status[j]);
|
||
|
swap(alpha[i], alpha[j]);
|
||
|
swap(p[i], p[j]);
|
||
|
swap(active_set[i], active_set[j]);
|
||
|
swap(G_bar[i], G_bar[j]);
|
||
|
}
|
||
|
|
||
|
void Solver::reconstruct_gradient()
|
||
|
{
|
||
|
// reconstruct inactive elements of G from G_bar and free variables
|
||
|
|
||
|
if (active_size == l) { return; }
|
||
|
|
||
|
int i, j;
|
||
|
int nr_free = 0;
|
||
|
|
||
|
for (j = active_size; j < l; j++) { G[j] = G_bar[j] + p[j]; }
|
||
|
|
||
|
for (j = 0; j < active_size; j++) { if (is_free(j)) { nr_free++; } }
|
||
|
|
||
|
if (2 * nr_free < active_size) { info("\nWARNING: using -h 0 may be faster\n"); }
|
||
|
|
||
|
if (nr_free * l > 2 * active_size * (l - active_size))
|
||
|
{
|
||
|
for (i = active_size; i < l; i++)
|
||
|
{
|
||
|
const Qfloat* Q_i = Q->get_Q(i, active_size);
|
||
|
for (j = 0; j < active_size; j++) { if (is_free(j)) { G[i] += alpha[j] * Q_i[j]; } }
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for (i = 0; i < active_size; i++)
|
||
|
{
|
||
|
if (is_free(i))
|
||
|
{
|
||
|
const Qfloat* Q_i = Q->get_Q(i, l);
|
||
|
const double alpha_i = alpha[i];
|
||
|
for (j = active_size; j < l; j++) { G[j] += alpha_i * Q_i[j]; }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Solver::Solve(const int l, const QMatrix& Q, const double* p_, const schar* y_, double* alpha_, const double Cp, const double Cn, const double eps,
|
||
|
SolutionInfo* si, const int shrinking)
|
||
|
{
|
||
|
this->l = l;
|
||
|
this->Q = &Q;
|
||
|
QD = Q.get_QD();
|
||
|
clone(p, p_, l);
|
||
|
clone(y, y_, l);
|
||
|
clone(alpha, alpha_, l);
|
||
|
this->Cp = Cp;
|
||
|
this->Cn = Cn;
|
||
|
this->eps = eps;
|
||
|
unshrink = false;
|
||
|
|
||
|
// initialize alpha_status
|
||
|
{
|
||
|
alpha_status = new char[l];
|
||
|
for (int i = 0; i < l; i++) { update_alpha_status(i); }
|
||
|
}
|
||
|
|
||
|
// initialize active set (for shrinking)
|
||
|
{
|
||
|
active_set = new int[l];
|
||
|
for (int i = 0; i < l; i++) { active_set[i] = i; }
|
||
|
active_size = l;
|
||
|
}
|
||
|
|
||
|
// initialize gradient
|
||
|
{
|
||
|
G = new double[l];
|
||
|
G_bar = new double[l];
|
||
|
int i;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
G[i] = p[i];
|
||
|
G_bar[i] = 0;
|
||
|
}
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (!is_lower_bound(i))
|
||
|
{
|
||
|
const Qfloat* Q_i = Q.get_Q(i, l);
|
||
|
const double alpha_i = alpha[i];
|
||
|
int j;
|
||
|
for (j = 0; j < l; j++) { G[j] += alpha_i * Q_i[j]; }
|
||
|
if (is_upper_bound(i)) { for (j = 0; j < l; j++) { G_bar[j] += get_C(i) * Q_i[j]; } }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// optimization step
|
||
|
|
||
|
int iter = 0;
|
||
|
const int max_iter = max(10000000, l > INT_MAX / 100 ? INT_MAX : 100 * l);
|
||
|
int counter = min(l, 1000) + 1;
|
||
|
|
||
|
while (iter < max_iter)
|
||
|
{
|
||
|
// show progress and do shrinking
|
||
|
|
||
|
if (--counter == 0)
|
||
|
{
|
||
|
counter = min(l, 1000);
|
||
|
if (shrinking) { do_shrinking(); }
|
||
|
info(".");
|
||
|
}
|
||
|
|
||
|
int i, j;
|
||
|
if (select_working_set(i, j) != 0)
|
||
|
{
|
||
|
// reconstruct the whole gradient
|
||
|
reconstruct_gradient();
|
||
|
// reset active set size and check
|
||
|
active_size = l;
|
||
|
info("*");
|
||
|
if (select_working_set(i, j) != 0) { break; } // do shrinking next iteration
|
||
|
counter = 1;
|
||
|
}
|
||
|
|
||
|
++iter;
|
||
|
|
||
|
// update alpha[i] and alpha[j], handle bounds carefully
|
||
|
|
||
|
const Qfloat* Q_i = Q.get_Q(i, active_size);
|
||
|
const Qfloat* Q_j = Q.get_Q(j, active_size);
|
||
|
|
||
|
const double C_i = get_C(i);
|
||
|
const double C_j = get_C(j);
|
||
|
|
||
|
const double old_alpha_i = alpha[i];
|
||
|
const double old_alpha_j = alpha[j];
|
||
|
|
||
|
if (y[i] != y[j])
|
||
|
{
|
||
|
double quad_coef = QD[i] + QD[j] + 2 * Q_i[j];
|
||
|
if (quad_coef <= 0) { quad_coef = TAU; }
|
||
|
const double delta = (-G[i] - G[j]) / quad_coef;
|
||
|
const double diff = alpha[i] - alpha[j];
|
||
|
alpha[i] += delta;
|
||
|
alpha[j] += delta;
|
||
|
|
||
|
if (diff > 0)
|
||
|
{
|
||
|
if (alpha[j] < 0)
|
||
|
{
|
||
|
alpha[j] = 0;
|
||
|
alpha[i] = diff;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (alpha[i] < 0)
|
||
|
{
|
||
|
alpha[i] = 0;
|
||
|
alpha[j] = -diff;
|
||
|
}
|
||
|
}
|
||
|
if (diff > C_i - C_j)
|
||
|
{
|
||
|
if (alpha[i] > C_i)
|
||
|
{
|
||
|
alpha[i] = C_i;
|
||
|
alpha[j] = C_i - diff;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (alpha[j] > C_j)
|
||
|
{
|
||
|
alpha[j] = C_j;
|
||
|
alpha[i] = C_j + diff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double quad_coef = QD[i] + QD[j] - 2 * Q_i[j];
|
||
|
if (quad_coef <= 0) { quad_coef = TAU; }
|
||
|
const double delta = (G[i] - G[j]) / quad_coef;
|
||
|
const double sum = alpha[i] + alpha[j];
|
||
|
alpha[i] -= delta;
|
||
|
alpha[j] += delta;
|
||
|
|
||
|
if (sum > C_i)
|
||
|
{
|
||
|
if (alpha[i] > C_i)
|
||
|
{
|
||
|
alpha[i] = C_i;
|
||
|
alpha[j] = sum - C_i;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (alpha[j] < 0)
|
||
|
{
|
||
|
alpha[j] = 0;
|
||
|
alpha[i] = sum;
|
||
|
}
|
||
|
}
|
||
|
if (sum > C_j)
|
||
|
{
|
||
|
if (alpha[j] > C_j)
|
||
|
{
|
||
|
alpha[j] = C_j;
|
||
|
alpha[i] = sum - C_j;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (alpha[i] < 0)
|
||
|
{
|
||
|
alpha[i] = 0;
|
||
|
alpha[j] = sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// update G
|
||
|
|
||
|
const double delta_alpha_i = alpha[i] - old_alpha_i;
|
||
|
const double delta_alpha_j = alpha[j] - old_alpha_j;
|
||
|
|
||
|
for (int k = 0; k < active_size; k++) { G[k] += Q_i[k] * delta_alpha_i + Q_j[k] * delta_alpha_j; }
|
||
|
|
||
|
// update alpha_status and G_bar
|
||
|
|
||
|
{
|
||
|
const bool ui = is_upper_bound(i);
|
||
|
const bool uj = is_upper_bound(j);
|
||
|
update_alpha_status(i);
|
||
|
update_alpha_status(j);
|
||
|
int k;
|
||
|
if (ui != is_upper_bound(i))
|
||
|
{
|
||
|
Q_i = Q.get_Q(i, l);
|
||
|
if (ui) { for (k = 0; k < l; k++) { G_bar[k] -= C_i * Q_i[k]; } }
|
||
|
else { for (k = 0; k < l; k++) { G_bar[k] += C_i * Q_i[k]; } }
|
||
|
}
|
||
|
|
||
|
if (uj != is_upper_bound(j))
|
||
|
{
|
||
|
Q_j = Q.get_Q(j, l);
|
||
|
if (uj) { for (k = 0; k < l; k++) { G_bar[k] -= C_j * Q_j[k]; } }
|
||
|
else { for (k = 0; k < l; k++) { G_bar[k] += C_j * Q_j[k]; } }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (iter >= max_iter)
|
||
|
{
|
||
|
if (active_size < l)
|
||
|
{
|
||
|
// reconstruct the whole gradient to calculate objective value
|
||
|
reconstruct_gradient();
|
||
|
active_size = l;
|
||
|
info("*");
|
||
|
}
|
||
|
fprintf(stderr, "\nWARNING: reaching max number of iterations\n");
|
||
|
}
|
||
|
|
||
|
// calculate rho
|
||
|
|
||
|
si->rho = calculate_rho();
|
||
|
|
||
|
// calculate objective value
|
||
|
{
|
||
|
double v = 0;
|
||
|
for (int i = 0; i < l; i++) { v += alpha[i] * (G[i] + p[i]); }
|
||
|
|
||
|
si->obj = v / 2;
|
||
|
}
|
||
|
|
||
|
// put back the solution
|
||
|
{
|
||
|
for (int i = 0; i < l; i++) { alpha_[active_set[i]] = alpha[i]; }
|
||
|
}
|
||
|
|
||
|
// juggle everything back
|
||
|
/*{
|
||
|
for(int i=0;i<l;i++)
|
||
|
while(active_set[i] != i)
|
||
|
swap_index(i,active_set[i]);
|
||
|
// or Q.swap_index(i,active_set[i]);
|
||
|
}*/
|
||
|
|
||
|
si->upper_bound_p = Cp;
|
||
|
si->upper_bound_n = Cn;
|
||
|
|
||
|
info("\noptimization finished, #iter = %d\n", iter);
|
||
|
|
||
|
delete[] p;
|
||
|
delete[] y;
|
||
|
delete[] alpha;
|
||
|
delete[] alpha_status;
|
||
|
delete[] active_set;
|
||
|
delete[] G;
|
||
|
delete[] G_bar;
|
||
|
}
|
||
|
|
||
|
// return 1 if already optimal, return 0 otherwise
|
||
|
int Solver::select_working_set(int& out_i, int& out_j)
|
||
|
{
|
||
|
// return i,j such that
|
||
|
// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
||
|
// j: minimizes the decrease of obj value
|
||
|
// (if quadratic coefficeint <= 0, replace it with tau)
|
||
|
// -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
||
|
|
||
|
double Gmax = -INF;
|
||
|
double Gmax2 = -INF;
|
||
|
int Gmax_idx = -1;
|
||
|
int Gmin_idx = -1;
|
||
|
double obj_diff_min = INF;
|
||
|
|
||
|
for (int t = 0; t < active_size; t++)
|
||
|
{
|
||
|
if (y[t] == +1)
|
||
|
{
|
||
|
if (!is_upper_bound(t))
|
||
|
{
|
||
|
if (-G[t] >= Gmax)
|
||
|
{
|
||
|
Gmax = -G[t];
|
||
|
Gmax_idx = t;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (!is_lower_bound(t))
|
||
|
{
|
||
|
if (G[t] >= Gmax)
|
||
|
{
|
||
|
Gmax = G[t];
|
||
|
Gmax_idx = t;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const int i = Gmax_idx;
|
||
|
const Qfloat* Q_i = nullptr;
|
||
|
if (i != -1) { Q_i = Q->get_Q(i, active_size); } // NULL Q_i not accessed: Gmax=-INF if i=-1
|
||
|
|
||
|
for (int j = 0; j < active_size; j++)
|
||
|
{
|
||
|
if (y[j] == +1)
|
||
|
{
|
||
|
if (!is_lower_bound(j))
|
||
|
{
|
||
|
const double grad_diff = Gmax + G[j];
|
||
|
if (G[j] >= Gmax2) { Gmax2 = G[j]; }
|
||
|
if (grad_diff > 0)
|
||
|
{
|
||
|
double obj_diff;
|
||
|
const double quad_coef = QD[i] + QD[j] - 2.0 * y[i] * Q_i[j];
|
||
|
if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
|
||
|
else { obj_diff = -(grad_diff * grad_diff) / TAU; }
|
||
|
|
||
|
if (obj_diff <= obj_diff_min)
|
||
|
{
|
||
|
Gmin_idx = j;
|
||
|
obj_diff_min = obj_diff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (!is_upper_bound(j))
|
||
|
{
|
||
|
const double grad_diff = Gmax - G[j];
|
||
|
if (-G[j] >= Gmax2) { Gmax2 = -G[j]; }
|
||
|
if (grad_diff > 0)
|
||
|
{
|
||
|
double obj_diff;
|
||
|
const double quad_coef = QD[i] + QD[j] + 2.0 * y[i] * Q_i[j];
|
||
|
if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
|
||
|
else { obj_diff = -(grad_diff * grad_diff) / TAU; }
|
||
|
|
||
|
if (obj_diff <= obj_diff_min)
|
||
|
{
|
||
|
Gmin_idx = j;
|
||
|
obj_diff_min = obj_diff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Gmax + Gmax2 < eps || Gmin_idx == -1) { return 1; }
|
||
|
|
||
|
out_i = Gmax_idx;
|
||
|
out_j = Gmin_idx;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bool Solver::be_shrunk(const int i, const double Gmax1, const double Gmax2)
|
||
|
{
|
||
|
if (is_upper_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { return (-G[i] > Gmax1); }
|
||
|
return (-G[i] > Gmax2);
|
||
|
}
|
||
|
if (is_lower_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { return (G[i] > Gmax2); }
|
||
|
return (G[i] > Gmax1);
|
||
|
}
|
||
|
return (false);
|
||
|
}
|
||
|
|
||
|
void Solver::do_shrinking()
|
||
|
{
|
||
|
int i;
|
||
|
double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
|
||
|
double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
|
||
|
|
||
|
// find maximal violating pair first
|
||
|
for (i = 0; i < active_size; i++)
|
||
|
{
|
||
|
if (y[i] == +1)
|
||
|
{
|
||
|
if (!is_upper_bound(i)) { if (-G[i] >= Gmax1) { Gmax1 = -G[i]; } }
|
||
|
if (!is_lower_bound(i)) { if (G[i] >= Gmax2) { Gmax2 = G[i]; } }
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (!is_upper_bound(i)) { if (-G[i] >= Gmax2) { Gmax2 = -G[i]; } }
|
||
|
if (!is_lower_bound(i)) { if (G[i] >= Gmax1) { Gmax1 = G[i]; } }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (unshrink == false && Gmax1 + Gmax2 <= eps * 10)
|
||
|
{
|
||
|
unshrink = true;
|
||
|
reconstruct_gradient();
|
||
|
active_size = l;
|
||
|
info("*");
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < active_size; i++)
|
||
|
{
|
||
|
if (be_shrunk(i, Gmax1, Gmax2))
|
||
|
{
|
||
|
active_size--;
|
||
|
while (active_size > i)
|
||
|
{
|
||
|
if (!be_shrunk(active_size, Gmax1, Gmax2))
|
||
|
{
|
||
|
swap_index(i, active_size);
|
||
|
break;
|
||
|
}
|
||
|
active_size--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double Solver::calculate_rho()
|
||
|
{
|
||
|
double r;
|
||
|
int nr_free = 0;
|
||
|
double ub = INF, lb = -INF, sum_free = 0;
|
||
|
for (int i = 0; i < active_size; i++)
|
||
|
{
|
||
|
const double yG = y[i] * G[i];
|
||
|
|
||
|
if (is_upper_bound(i))
|
||
|
{
|
||
|
if (y[i] == -1) { ub = min(ub, yG); }
|
||
|
else { lb = max(lb, yG); }
|
||
|
}
|
||
|
else if (is_lower_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { ub = min(ub, yG); }
|
||
|
else { lb = max(lb, yG); }
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++nr_free;
|
||
|
sum_free += yG;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (nr_free > 0) { r = sum_free / nr_free; }
|
||
|
else { r = (ub + lb) / 2; }
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Solver for nu-svm classification and regression
|
||
|
//
|
||
|
// additional constraint: e^T \alpha = constant
|
||
|
//
|
||
|
class Solver_NU : public Solver
|
||
|
{
|
||
|
public:
|
||
|
Solver_NU() {}
|
||
|
void Solve(const int l, const QMatrix& Q, const double* p, const schar* y, double* alpha, const double Cp, const double Cn, const double eps,
|
||
|
SolutionInfo* si, const int shrinking)
|
||
|
{
|
||
|
this->si = si;
|
||
|
Solver::Solve(l, Q, p, y, alpha, Cp, Cn, eps, si, shrinking);
|
||
|
}
|
||
|
private:
|
||
|
SolutionInfo* si = nullptr;
|
||
|
int select_working_set(int& out_i, int& out_j) override;
|
||
|
double calculate_rho() override;
|
||
|
bool be_shrunk(const int i, const double Gmax1, const double Gmax2, const double Gmax3, const double Gmax4);
|
||
|
void do_shrinking() override;
|
||
|
};
|
||
|
|
||
|
// return 1 if already optimal, return 0 otherwise
|
||
|
int Solver_NU::select_working_set(int& out_i, int& out_j)
|
||
|
{
|
||
|
// return i,j such that y_i = y_j and
|
||
|
// i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
|
||
|
// j: minimizes the decrease of obj value
|
||
|
// (if quadratic coefficeint <= 0, replace it with tau)
|
||
|
// -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
|
||
|
|
||
|
double Gmaxp = -INF;
|
||
|
double Gmaxp2 = -INF;
|
||
|
int Gmaxp_idx = -1;
|
||
|
|
||
|
double Gmaxn = -INF;
|
||
|
double Gmaxn2 = -INF;
|
||
|
int Gmaxn_idx = -1;
|
||
|
|
||
|
int Gmin_idx = -1;
|
||
|
double obj_diff_min = INF;
|
||
|
|
||
|
for (int t = 0; t < active_size; t++)
|
||
|
{
|
||
|
if (y[t] == +1)
|
||
|
{
|
||
|
if (!is_upper_bound(t))
|
||
|
{
|
||
|
if (-G[t] >= Gmaxp)
|
||
|
{
|
||
|
Gmaxp = -G[t];
|
||
|
Gmaxp_idx = t;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (!is_lower_bound(t))
|
||
|
{
|
||
|
if (G[t] >= Gmaxn)
|
||
|
{
|
||
|
Gmaxn = G[t];
|
||
|
Gmaxn_idx = t;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const int ip = Gmaxp_idx;
|
||
|
const int in = Gmaxn_idx;
|
||
|
const Qfloat* Q_ip = nullptr;
|
||
|
const Qfloat* Q_in = nullptr;
|
||
|
if (ip != -1) { Q_ip = Q->get_Q(ip, active_size); } // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
|
||
|
if (in != -1) { Q_in = Q->get_Q(in, active_size); }
|
||
|
|
||
|
for (int j = 0; j < active_size; j++)
|
||
|
{
|
||
|
if (y[j] == +1)
|
||
|
{
|
||
|
if (!is_lower_bound(j))
|
||
|
{
|
||
|
const double grad_diff = Gmaxp + G[j];
|
||
|
if (G[j] >= Gmaxp2) { Gmaxp2 = G[j]; }
|
||
|
if (grad_diff > 0)
|
||
|
{
|
||
|
double obj_diff;
|
||
|
const double quad_coef = QD[ip] + QD[j] - 2 * Q_ip[j];
|
||
|
if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
|
||
|
else { obj_diff = -(grad_diff * grad_diff) / TAU; }
|
||
|
|
||
|
if (obj_diff <= obj_diff_min)
|
||
|
{
|
||
|
Gmin_idx = j;
|
||
|
obj_diff_min = obj_diff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (!is_upper_bound(j))
|
||
|
{
|
||
|
const double grad_diff = Gmaxn - G[j];
|
||
|
if (-G[j] >= Gmaxn2) { Gmaxn2 = -G[j]; }
|
||
|
if (grad_diff > 0)
|
||
|
{
|
||
|
double obj_diff;
|
||
|
const double quad_coef = QD[in] + QD[j] - 2 * Q_in[j];
|
||
|
if (quad_coef > 0) { obj_diff = -(grad_diff * grad_diff) / quad_coef; }
|
||
|
else { obj_diff = -(grad_diff * grad_diff) / TAU; }
|
||
|
|
||
|
if (obj_diff <= obj_diff_min)
|
||
|
{
|
||
|
Gmin_idx = j;
|
||
|
obj_diff_min = obj_diff;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (max(Gmaxp + Gmaxp2, Gmaxn + Gmaxn2) < eps || Gmin_idx == -1) { return 1; }
|
||
|
|
||
|
if (y[Gmin_idx] == +1) { out_i = Gmaxp_idx; }
|
||
|
else { out_i = Gmaxn_idx; }
|
||
|
out_j = Gmin_idx;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
bool Solver_NU::be_shrunk(const int i, const double Gmax1, const double Gmax2, const double Gmax3, const double Gmax4)
|
||
|
{
|
||
|
if (is_upper_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { return (-G[i] > Gmax1); }
|
||
|
return (-G[i] > Gmax4);
|
||
|
}
|
||
|
if (is_lower_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { return (G[i] > Gmax2); }
|
||
|
return (G[i] > Gmax3);
|
||
|
}
|
||
|
return (false);
|
||
|
}
|
||
|
|
||
|
void Solver_NU::do_shrinking()
|
||
|
{
|
||
|
double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
|
||
|
double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
|
||
|
double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
|
||
|
double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
|
||
|
|
||
|
// find maximal violating pair first
|
||
|
int i;
|
||
|
for (i = 0; i < active_size; i++)
|
||
|
{
|
||
|
if (!is_upper_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { if (-G[i] > Gmax1) { Gmax1 = -G[i]; } }
|
||
|
else if (-G[i] > Gmax4) { Gmax4 = -G[i]; }
|
||
|
}
|
||
|
if (!is_lower_bound(i))
|
||
|
{
|
||
|
if (y[i] == +1) { if (G[i] > Gmax2) { Gmax2 = G[i]; } }
|
||
|
else if (G[i] > Gmax3) { Gmax3 = G[i]; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (unshrink == false && max(Gmax1 + Gmax2, Gmax3 + Gmax4) <= eps * 10)
|
||
|
{
|
||
|
unshrink = true;
|
||
|
reconstruct_gradient();
|
||
|
active_size = l;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < active_size; i++)
|
||
|
{
|
||
|
if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
|
||
|
{
|
||
|
active_size--;
|
||
|
while (active_size > i)
|
||
|
{
|
||
|
if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
|
||
|
{
|
||
|
swap_index(i, active_size);
|
||
|
break;
|
||
|
}
|
||
|
active_size--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double Solver_NU::calculate_rho()
|
||
|
{
|
||
|
int nr_free1 = 0, nr_free2 = 0;
|
||
|
double ub1 = INF, ub2 = INF;
|
||
|
double lb1 = -INF, lb2 = -INF;
|
||
|
double sum_free1 = 0, sum_free2 = 0;
|
||
|
|
||
|
for (int i = 0; i < active_size; i++)
|
||
|
{
|
||
|
if (y[i] == +1)
|
||
|
{
|
||
|
if (is_upper_bound(i)) { lb1 = max(lb1, G[i]); }
|
||
|
else if (is_lower_bound(i)) { ub1 = min(ub1, G[i]); }
|
||
|
else
|
||
|
{
|
||
|
++nr_free1;
|
||
|
sum_free1 += G[i];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (is_upper_bound(i)) { lb2 = max(lb2, G[i]); }
|
||
|
else if (is_lower_bound(i)) { ub2 = min(ub2, G[i]); }
|
||
|
else
|
||
|
{
|
||
|
++nr_free2;
|
||
|
sum_free2 += G[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double r1, r2;
|
||
|
if (nr_free1 > 0) { r1 = sum_free1 / nr_free1; }
|
||
|
else { r1 = (ub1 + lb1) / 2; }
|
||
|
|
||
|
if (nr_free2 > 0) { r2 = sum_free2 / nr_free2; }
|
||
|
else { r2 = (ub2 + lb2) / 2; }
|
||
|
|
||
|
si->r = (r1 + r2) / 2;
|
||
|
return (r1 - r2) / 2;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Q matrices for various formulations
|
||
|
//
|
||
|
class SVC_Q : public Kernel
|
||
|
{
|
||
|
public:
|
||
|
SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar* y_)
|
||
|
: Kernel(prob.l, prob.x, param)
|
||
|
{
|
||
|
clone(y, y_, prob.l);
|
||
|
cache = new Cache(prob.l, long(param.cache_size * (1 << 20)));
|
||
|
QD = new double[prob.l];
|
||
|
for (int i = 0; i < prob.l; i++) { QD[i] = (this->*kernel_function)(i, i); }
|
||
|
}
|
||
|
|
||
|
Qfloat* get_Q(const int i, const int len) const override
|
||
|
{
|
||
|
Qfloat* data;
|
||
|
int start;
|
||
|
if ((start = cache->get_data(i, &data, len)) < len)
|
||
|
{
|
||
|
for (int j = start; j < len; j++) { data[j] = Qfloat(y[i] * y[j] * (this->*kernel_function)(i, j)); }
|
||
|
}
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
double* get_QD() const override { return QD; }
|
||
|
|
||
|
void swap_index(const int i, const int j) const override
|
||
|
{
|
||
|
cache->swap_index(i, j);
|
||
|
Kernel::swap_index(i, j);
|
||
|
swap(y[i], y[j]);
|
||
|
swap(QD[i], QD[j]);
|
||
|
}
|
||
|
|
||
|
~SVC_Q() override
|
||
|
{
|
||
|
delete[] y;
|
||
|
delete cache;
|
||
|
delete[] QD;
|
||
|
}
|
||
|
private:
|
||
|
schar* y;
|
||
|
Cache* cache;
|
||
|
double* QD;
|
||
|
};
|
||
|
|
||
|
class ONE_CLASS_Q : public Kernel
|
||
|
{
|
||
|
public:
|
||
|
ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
|
||
|
: Kernel(prob.l, prob.x, param)
|
||
|
{
|
||
|
cache = new Cache(prob.l, long(param.cache_size * (1 << 20)));
|
||
|
QD = new double[prob.l];
|
||
|
for (int i = 0; i < prob.l; i++) { QD[i] = (this->*kernel_function)(i, i); }
|
||
|
}
|
||
|
|
||
|
Qfloat* get_Q(const int i, const int len) const override
|
||
|
{
|
||
|
Qfloat* data;
|
||
|
int start;
|
||
|
if ((start = cache->get_data(i, &data, len)) < len) { for (int j = start; j < len; j++) { data[j] = Qfloat((this->*kernel_function)(i, j)); } }
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
double* get_QD() const override { return QD; }
|
||
|
|
||
|
void swap_index(const int i, const int j) const override
|
||
|
{
|
||
|
cache->swap_index(i, j);
|
||
|
Kernel::swap_index(i, j);
|
||
|
swap(QD[i], QD[j]);
|
||
|
}
|
||
|
|
||
|
~ONE_CLASS_Q() override
|
||
|
{
|
||
|
delete cache;
|
||
|
delete[] QD;
|
||
|
}
|
||
|
private:
|
||
|
Cache* cache;
|
||
|
double* QD;
|
||
|
};
|
||
|
|
||
|
class SVR_Q : public Kernel
|
||
|
{
|
||
|
public:
|
||
|
SVR_Q(const svm_problem& prob, const svm_parameter& param)
|
||
|
: Kernel(prob.l, prob.x, param)
|
||
|
{
|
||
|
l = prob.l;
|
||
|
cache = new Cache(l, long(param.cache_size * (1 << 20)));
|
||
|
QD = new double[2 * l];
|
||
|
sign = new schar[2 * l];
|
||
|
index = new int[2 * l];
|
||
|
for (int k = 0; k < l; k++)
|
||
|
{
|
||
|
sign[k] = 1;
|
||
|
sign[k + l] = -1;
|
||
|
index[k] = k;
|
||
|
index[k + l] = k;
|
||
|
QD[k] = (this->*kernel_function)(k, k);
|
||
|
QD[k + l] = QD[k];
|
||
|
}
|
||
|
buffer[0] = new Qfloat[2 * l];
|
||
|
buffer[1] = new Qfloat[2 * l];
|
||
|
next_buffer = 0;
|
||
|
}
|
||
|
|
||
|
void swap_index(const int i, const int j) const override
|
||
|
{
|
||
|
swap(sign[i], sign[j]);
|
||
|
swap(index[i], index[j]);
|
||
|
swap(QD[i], QD[j]);
|
||
|
}
|
||
|
|
||
|
Qfloat* get_Q(const int i, const int len) const override
|
||
|
{
|
||
|
Qfloat* data;
|
||
|
int j, real_i = index[i];
|
||
|
if (cache->get_data(real_i, &data, l) < l) { for (j = 0; j < l; j++) { data[j] = Qfloat((this->*kernel_function)(real_i, j)); } }
|
||
|
|
||
|
// reorder and copy
|
||
|
Qfloat* buf = buffer[next_buffer];
|
||
|
next_buffer = 1 - next_buffer;
|
||
|
const schar si = sign[i];
|
||
|
for (j = 0; j < len; j++) { buf[j] = Qfloat(si) * Qfloat(sign[j]) * data[index[j]]; }
|
||
|
return buf;
|
||
|
}
|
||
|
|
||
|
double* get_QD() const override { return QD; }
|
||
|
|
||
|
~SVR_Q() override
|
||
|
{
|
||
|
delete cache;
|
||
|
delete[] sign;
|
||
|
delete[] index;
|
||
|
delete[] buffer[0];
|
||
|
delete[] buffer[1];
|
||
|
delete[] QD;
|
||
|
}
|
||
|
private:
|
||
|
int l;
|
||
|
Cache* cache;
|
||
|
schar* sign;
|
||
|
int* index;
|
||
|
mutable int next_buffer;
|
||
|
Qfloat* buffer[2];
|
||
|
double* QD;
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// construct and solve various formulations
|
||
|
//
|
||
|
static void solve_c_svc(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si, const double Cp, const double Cn)
|
||
|
{
|
||
|
const int l = prob->l;
|
||
|
double* minus_ones = new double[l];
|
||
|
schar* y = new schar[l];
|
||
|
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
alpha[i] = 0;
|
||
|
minus_ones[i] = -1;
|
||
|
if (prob->y[i] > 0) { y[i] = +1; }
|
||
|
else { y[i] = -1; }
|
||
|
}
|
||
|
|
||
|
Solver s;
|
||
|
s.Solve(l, SVC_Q(*prob, *param, y), minus_ones, y, alpha, Cp, Cn, param->eps, si, param->shrinking);
|
||
|
|
||
|
double sum_alpha = 0;
|
||
|
for (i = 0; i < l; i++) { sum_alpha += alpha[i]; }
|
||
|
|
||
|
if (Cp == Cn) { info("nu = %f\n", sum_alpha / (Cp * prob->l)); }
|
||
|
|
||
|
for (i = 0; i < l; i++) { alpha[i] *= y[i]; }
|
||
|
|
||
|
delete[] minus_ones;
|
||
|
delete[] y;
|
||
|
}
|
||
|
|
||
|
static void solve_nu_svc(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
|
||
|
{
|
||
|
int i;
|
||
|
const int l = prob->l;
|
||
|
const double nu = param->nu;
|
||
|
|
||
|
schar* y = new schar[l];
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (prob->y[i] > 0) { y[i] = +1; }
|
||
|
else { y[i] = -1; }
|
||
|
}
|
||
|
|
||
|
double sum_pos = nu * l / 2;
|
||
|
double sum_neg = nu * l / 2;
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (y[i] == +1)
|
||
|
{
|
||
|
alpha[i] = min(1.0, sum_pos);
|
||
|
sum_pos -= alpha[i];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
alpha[i] = min(1.0, sum_neg);
|
||
|
sum_neg -= alpha[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double* zeros = new double[l];
|
||
|
|
||
|
for (i = 0; i < l; i++) { zeros[i] = 0; }
|
||
|
|
||
|
Solver_NU s;
|
||
|
s.Solve(l, SVC_Q(*prob, *param, y), zeros, y, alpha, 1.0, 1.0, param->eps, si, param->shrinking);
|
||
|
const double r = si->r;
|
||
|
|
||
|
info("C = %f\n", 1 / r);
|
||
|
|
||
|
for (i = 0; i < l; i++) { alpha[i] *= y[i] / r; }
|
||
|
|
||
|
si->rho /= r;
|
||
|
si->obj /= (r * r);
|
||
|
si->upper_bound_p = 1 / r;
|
||
|
si->upper_bound_n = 1 / r;
|
||
|
|
||
|
delete[] y;
|
||
|
delete[] zeros;
|
||
|
}
|
||
|
|
||
|
static void solve_one_class(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
|
||
|
{
|
||
|
const int l = prob->l;
|
||
|
double* zeros = new double[l];
|
||
|
schar* ones = new schar[l];
|
||
|
int i;
|
||
|
|
||
|
const int n = int(param->nu * prob->l); // # of alpha's at upper bound
|
||
|
|
||
|
for (i = 0; i < n; i++) { alpha[i] = 1; }
|
||
|
if (n < prob->l) { alpha[n] = param->nu * prob->l - n; }
|
||
|
for (i = n + 1; i < l; i++) { alpha[i] = 0; }
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
zeros[i] = 0;
|
||
|
ones[i] = 1;
|
||
|
}
|
||
|
|
||
|
Solver s;
|
||
|
s.Solve(l, ONE_CLASS_Q(*prob, *param), zeros, ones, alpha, 1.0, 1.0, param->eps, si, param->shrinking);
|
||
|
|
||
|
delete[] zeros;
|
||
|
delete[] ones;
|
||
|
}
|
||
|
|
||
|
static void solve_epsilon_svr(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
|
||
|
{
|
||
|
const int l = prob->l;
|
||
|
double* alpha2 = new double[2 * l];
|
||
|
double* linear_term = new double[2 * l];
|
||
|
schar* y = new schar[2 * l];
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
alpha2[i] = 0;
|
||
|
linear_term[i] = param->p - prob->y[i];
|
||
|
y[i] = 1;
|
||
|
|
||
|
alpha2[i + l] = 0;
|
||
|
linear_term[i + l] = param->p + prob->y[i];
|
||
|
y[i + l] = -1;
|
||
|
}
|
||
|
|
||
|
Solver s;
|
||
|
s.Solve(2 * l, SVR_Q(*prob, *param), linear_term, y, alpha2, param->C, param->C, param->eps, si, param->shrinking);
|
||
|
|
||
|
double sum_alpha = 0;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
alpha[i] = alpha2[i] - alpha2[i + l];
|
||
|
sum_alpha += fabs(alpha[i]);
|
||
|
}
|
||
|
info("nu = %f\n", sum_alpha / (param->C * l));
|
||
|
|
||
|
delete[] alpha2;
|
||
|
delete[] linear_term;
|
||
|
delete[] y;
|
||
|
}
|
||
|
|
||
|
static void solve_nu_svr(const svm_problem* prob, const svm_parameter* param, double* alpha, Solver::SolutionInfo* si)
|
||
|
{
|
||
|
const int l = prob->l;
|
||
|
const double C = param->C;
|
||
|
double* alpha2 = new double[2 * l];
|
||
|
double* linear_term = new double[2 * l];
|
||
|
schar* y = new schar[2 * l];
|
||
|
int i;
|
||
|
|
||
|
double sum = C * param->nu * l / 2;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
alpha2[i] = alpha2[i + l] = min(sum, C);
|
||
|
sum -= alpha2[i];
|
||
|
|
||
|
linear_term[i] = -prob->y[i];
|
||
|
y[i] = 1;
|
||
|
|
||
|
linear_term[i + l] = prob->y[i];
|
||
|
y[i + l] = -1;
|
||
|
}
|
||
|
|
||
|
Solver_NU s;
|
||
|
s.Solve(2 * l, SVR_Q(*prob, *param), linear_term, y, alpha2, C, C, param->eps, si, param->shrinking);
|
||
|
|
||
|
info("epsilon = %f\n", -si->r);
|
||
|
|
||
|
for (i = 0; i < l; i++) { alpha[i] = alpha2[i] - alpha2[i + l]; }
|
||
|
|
||
|
delete[] alpha2;
|
||
|
delete[] linear_term;
|
||
|
delete[] y;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// decision_function
|
||
|
//
|
||
|
struct decision_function
|
||
|
{
|
||
|
double* alpha;
|
||
|
double rho;
|
||
|
};
|
||
|
|
||
|
static decision_function svm_train_one(const svm_problem* prob, const svm_parameter* param, const double Cp, const double Cn)
|
||
|
{
|
||
|
double* alpha = Malloc(double, prob->l);
|
||
|
Solver::SolutionInfo si;
|
||
|
switch (param->svm_type)
|
||
|
{
|
||
|
case C_SVC:
|
||
|
solve_c_svc(prob, param, alpha, &si, Cp, Cn);
|
||
|
break;
|
||
|
case NU_SVC:
|
||
|
solve_nu_svc(prob, param, alpha, &si);
|
||
|
break;
|
||
|
case ONE_CLASS:
|
||
|
solve_one_class(prob, param, alpha, &si);
|
||
|
break;
|
||
|
case EPSILON_SVR:
|
||
|
solve_epsilon_svr(prob, param, alpha, &si);
|
||
|
break;
|
||
|
case NU_SVR:
|
||
|
solve_nu_svr(prob, param, alpha, &si);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
info("obj = %f, rho = %f\n", si.obj, si.rho);
|
||
|
|
||
|
// output SVs
|
||
|
|
||
|
int nSV = 0;
|
||
|
int nBSV = 0;
|
||
|
for (int i = 0; i < prob->l; i++)
|
||
|
{
|
||
|
if (fabs(alpha[i]) > 0)
|
||
|
{
|
||
|
++nSV;
|
||
|
if (prob->y[i] > 0) { if (fabs(alpha[i]) >= si.upper_bound_p) { ++nBSV; } }
|
||
|
else { if (fabs(alpha[i]) >= si.upper_bound_n) { ++nBSV; } }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
info("nSV = %d, nBSV = %d\n", nSV, nBSV);
|
||
|
|
||
|
decision_function f;
|
||
|
f.alpha = alpha;
|
||
|
f.rho = si.rho;
|
||
|
return f;
|
||
|
}
|
||
|
|
||
|
// Platt's binary SVM Probablistic Output: an improvement from Lin et al.
|
||
|
static void sigmoid_train(const int l, const double* dec_values, const double* labels, double& A, double& B)
|
||
|
{
|
||
|
double prior1 = 0, prior0 = 0;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (labels[i] > 0) { prior1 += 1; }
|
||
|
else { prior0 += 1; }
|
||
|
}
|
||
|
|
||
|
const int max_iter = 100; // Maximal number of iterations
|
||
|
const double min_step = 1e-10; // Minimal step taken in line search
|
||
|
const double sigma = 1e-12; // For numerically strict PD of Hessian
|
||
|
const double eps = 1e-5;
|
||
|
const double hiTarget = (prior1 + 1.0) / (prior1 + 2.0);
|
||
|
const double loTarget = 1 / (prior0 + 2.0);
|
||
|
double* t = Malloc(double, l);
|
||
|
double fApB, p, q;
|
||
|
int iter;
|
||
|
|
||
|
// Initial Point and Initial Fun Value
|
||
|
A = 0.0;
|
||
|
B = log((prior0 + 1.0) / (prior1 + 1.0));
|
||
|
double fval = 0.0;
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (labels[i] > 0) { t[i] = hiTarget; }
|
||
|
else { t[i] = loTarget; }
|
||
|
fApB = dec_values[i] * A + B;
|
||
|
if (fApB >= 0) { fval += t[i] * fApB + log(1 + exp(-fApB)); }
|
||
|
else { fval += (t[i] - 1) * fApB + log(1 + exp(fApB)); }
|
||
|
}
|
||
|
for (iter = 0; iter < max_iter; iter++)
|
||
|
{
|
||
|
// Update Gradient and Hessian (use H' = H + sigma I)
|
||
|
double h11 = sigma; // numerically ensures strict PD
|
||
|
double h22 = sigma;
|
||
|
double h21 = 0.0;
|
||
|
double g1 = 0.0;
|
||
|
double g2 = 0.0;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
fApB = dec_values[i] * A + B;
|
||
|
if (fApB >= 0)
|
||
|
{
|
||
|
p = exp(-fApB) / (1.0 + exp(-fApB));
|
||
|
q = 1.0 / (1.0 + exp(-fApB));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
p = 1.0 / (1.0 + exp(fApB));
|
||
|
q = exp(fApB) / (1.0 + exp(fApB));
|
||
|
}
|
||
|
const double d2 = p * q;
|
||
|
h11 += dec_values[i] * dec_values[i] * d2;
|
||
|
h22 += d2;
|
||
|
h21 += dec_values[i] * d2;
|
||
|
const double d1 = t[i] - p;
|
||
|
g1 += dec_values[i] * d1;
|
||
|
g2 += d1;
|
||
|
}
|
||
|
|
||
|
// Stopping Criteria
|
||
|
if (fabs(g1) < eps && fabs(g2) < eps) { break; }
|
||
|
|
||
|
// Finding Newton direction: -inv(H') * g
|
||
|
const double det = h11 * h22 - h21 * h21;
|
||
|
const double dA = -(h22 * g1 - h21 * g2) / det;
|
||
|
const double dB = -(-h21 * g1 + h11 * g2) / det;
|
||
|
const double gd = g1 * dA + g2 * dB;
|
||
|
|
||
|
|
||
|
double stepsize = 1; // Line Search
|
||
|
while (stepsize >= min_step)
|
||
|
{
|
||
|
const double newA = A + stepsize * dA;
|
||
|
const double newB = B + stepsize * dB;
|
||
|
|
||
|
// New function value
|
||
|
double newf = 0.0;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
fApB = dec_values[i] * newA + newB;
|
||
|
if (fApB >= 0) { newf += t[i] * fApB + log(1 + exp(-fApB)); }
|
||
|
else { newf += (t[i] - 1) * fApB + log(1 + exp(fApB)); }
|
||
|
}
|
||
|
// Check sufficient decrease
|
||
|
if (newf < fval + 0.0001 * stepsize * gd)
|
||
|
{
|
||
|
A = newA;
|
||
|
B = newB;
|
||
|
fval = newf;
|
||
|
break;
|
||
|
}
|
||
|
stepsize = stepsize / 2.0;
|
||
|
}
|
||
|
|
||
|
if (stepsize < min_step)
|
||
|
{
|
||
|
info("Line search fails in two-class probability estimates\n");
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (iter >= max_iter) { info("Reaching maximal iterations in two-class probability estimates\n"); }
|
||
|
free(t);
|
||
|
}
|
||
|
|
||
|
static double sigmoid_predict(const double decision_value, const double A, const double B)
|
||
|
{
|
||
|
const double fApB = decision_value * A + B;
|
||
|
// 1-p used later; avoid catastrophic cancellation
|
||
|
if (fApB >= 0) { return exp(-fApB) / (1.0 + exp(-fApB)); }
|
||
|
return 1.0 / (1 + exp(fApB));
|
||
|
}
|
||
|
|
||
|
// Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
|
||
|
static void multiclass_probability(const int k, double** r, double* p)
|
||
|
{
|
||
|
int t, j;
|
||
|
int iter = 0, max_iter = max(100, k);
|
||
|
double** Q = Malloc(double*, k);
|
||
|
double* Qp = Malloc(double, k);
|
||
|
const double eps = 0.005 / k;
|
||
|
|
||
|
for (t = 0; t < k; t++)
|
||
|
{
|
||
|
p[t] = 1.0 / k; // Valid if k = 1
|
||
|
Q[t] = Malloc(double, k);
|
||
|
Q[t][t] = 0;
|
||
|
for (j = 0; j < t; j++)
|
||
|
{
|
||
|
Q[t][t] += r[j][t] * r[j][t];
|
||
|
Q[t][j] = Q[j][t];
|
||
|
}
|
||
|
for (j = t + 1; j < k; j++)
|
||
|
{
|
||
|
Q[t][t] += r[j][t] * r[j][t];
|
||
|
Q[t][j] = -r[j][t] * r[t][j];
|
||
|
}
|
||
|
}
|
||
|
for (; iter < max_iter; iter++)
|
||
|
{
|
||
|
// stopping condition, recalculate QP,pQP for numerical accuracy
|
||
|
double pQp = 0;
|
||
|
for (t = 0; t < k; t++)
|
||
|
{
|
||
|
Qp[t] = 0;
|
||
|
for (j = 0; j < k; j++) { Qp[t] += Q[t][j] * p[j]; }
|
||
|
pQp += p[t] * Qp[t];
|
||
|
}
|
||
|
double max_error = 0;
|
||
|
for (t = 0; t < k; t++)
|
||
|
{
|
||
|
const double error = fabs(Qp[t] - pQp);
|
||
|
if (error > max_error) { max_error = error; }
|
||
|
}
|
||
|
if (max_error < eps) { break; }
|
||
|
|
||
|
for (t = 0; t < k; t++)
|
||
|
{
|
||
|
const double diff = (-Qp[t] + pQp) / Q[t][t];
|
||
|
p[t] += diff;
|
||
|
pQp = (pQp + diff * (diff * Q[t][t] + 2 * Qp[t])) / (1 + diff) / (1 + diff);
|
||
|
for (j = 0; j < k; j++)
|
||
|
{
|
||
|
Qp[j] = (Qp[j] + diff * Q[t][j]) / (1 + diff);
|
||
|
p[j] /= (1 + diff);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (iter >= max_iter) { info("Exceeds max_iter in multiclass_prob\n"); }
|
||
|
for (t = 0; t < k; t++) { free(Q[t]); }
|
||
|
free(Q);
|
||
|
free(Qp);
|
||
|
}
|
||
|
|
||
|
// Cross-validation decision values for probability estimates
|
||
|
static void svm_binary_svc_probability(const svm_problem* prob, const svm_parameter* param, const double Cp, const double Cn, double& probA, double& probB)
|
||
|
{
|
||
|
int i;
|
||
|
const int nr_fold = 5;
|
||
|
int* perm = Malloc(int, prob->l);
|
||
|
double* dec_values = Malloc(double, prob->l);
|
||
|
|
||
|
// random shuffle
|
||
|
for (i = 0; i < prob->l; i++) { perm[i] = i; }
|
||
|
for (i = 0; i < prob->l; i++)
|
||
|
{
|
||
|
const int j = i + rand() % (prob->l - i);
|
||
|
swap(perm[i], perm[j]);
|
||
|
}
|
||
|
for (i = 0; i < nr_fold; i++)
|
||
|
{
|
||
|
const int begin = i * prob->l / nr_fold;
|
||
|
const int end = (i + 1) * prob->l / nr_fold;
|
||
|
int j;
|
||
|
struct svm_problem subprob;
|
||
|
|
||
|
subprob.l = prob->l - (end - begin);
|
||
|
subprob.x = Malloc(struct svm_node*, subprob.l);
|
||
|
subprob.y = Malloc(double, subprob.l);
|
||
|
|
||
|
int k = 0;
|
||
|
for (j = 0; j < begin; j++)
|
||
|
{
|
||
|
subprob.x[k] = prob->x[perm[j]];
|
||
|
subprob.y[k] = prob->y[perm[j]];
|
||
|
++k;
|
||
|
}
|
||
|
for (j = end; j < prob->l; j++)
|
||
|
{
|
||
|
subprob.x[k] = prob->x[perm[j]];
|
||
|
subprob.y[k] = prob->y[perm[j]];
|
||
|
++k;
|
||
|
}
|
||
|
int p_count = 0, n_count = 0;
|
||
|
for (j = 0; j < k; j++)
|
||
|
{
|
||
|
if (subprob.y[j] > 0) { p_count++; }
|
||
|
else { n_count++; }
|
||
|
}
|
||
|
|
||
|
if (p_count == 0 && n_count == 0) { for (j = begin; j < end; j++) { dec_values[perm[j]] = 0; } }
|
||
|
else if (p_count > 0 && n_count == 0) { for (j = begin; j < end; j++) { dec_values[perm[j]] = 1; } }
|
||
|
else if (p_count == 0 && n_count > 0) { for (j = begin; j < end; j++) { dec_values[perm[j]] = -1; } }
|
||
|
else
|
||
|
{
|
||
|
svm_parameter subparam = *param;
|
||
|
subparam.probability = 0;
|
||
|
subparam.C = 1.0;
|
||
|
subparam.nr_weight = 2;
|
||
|
subparam.weight_label = Malloc(int, 2);
|
||
|
subparam.weight = Malloc(double, 2);
|
||
|
subparam.weight_label[0] = +1;
|
||
|
subparam.weight_label[1] = -1;
|
||
|
subparam.weight[0] = Cp;
|
||
|
subparam.weight[1] = Cn;
|
||
|
struct svm_model* submodel = svm_train(&subprob, &subparam);
|
||
|
for (j = begin; j < end; j++)
|
||
|
{
|
||
|
svm_predict_values(submodel, prob->x[perm[j]], &(dec_values[perm[j]]));
|
||
|
// ensure +1 -1 order; reason not using CV subroutine
|
||
|
dec_values[perm[j]] *= submodel->label[0];
|
||
|
}
|
||
|
svm_free_and_destroy_model(&submodel);
|
||
|
svm_destroy_param(&subparam);
|
||
|
}
|
||
|
free(subprob.x);
|
||
|
free(subprob.y);
|
||
|
}
|
||
|
sigmoid_train(prob->l, dec_values, prob->y, probA, probB);
|
||
|
free(dec_values);
|
||
|
free(perm);
|
||
|
}
|
||
|
|
||
|
// Return parameter of a Laplace distribution
|
||
|
static double svm_svr_probability(const svm_problem* prob, const svm_parameter* param)
|
||
|
{
|
||
|
int i;
|
||
|
const int nr_fold = 5;
|
||
|
double* ymv = Malloc(double, prob->l);
|
||
|
double mae = 0;
|
||
|
|
||
|
svm_parameter newparam = *param;
|
||
|
newparam.probability = 0;
|
||
|
svm_cross_validation(prob, &newparam, nr_fold, ymv);
|
||
|
for (i = 0; i < prob->l; i++)
|
||
|
{
|
||
|
ymv[i] = prob->y[i] - ymv[i];
|
||
|
mae += fabs(ymv[i]);
|
||
|
}
|
||
|
mae /= prob->l;
|
||
|
const double std = sqrt(2 * mae * mae);
|
||
|
int count = 0;
|
||
|
mae = 0;
|
||
|
for (i = 0; i < prob->l; i++)
|
||
|
{
|
||
|
if (fabs(ymv[i]) > 5 * std) { count = count + 1; }
|
||
|
else { mae += fabs(ymv[i]); }
|
||
|
}
|
||
|
mae /= (prob->l - count);
|
||
|
info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n", mae);
|
||
|
free(ymv);
|
||
|
return mae;
|
||
|
}
|
||
|
|
||
|
|
||
|
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
|
||
|
// perm, length l, must be allocated before calling this subroutine
|
||
|
static void svm_group_classes(const svm_problem* prob, int* nr_class_ret, int** label_ret, int** start_ret, int** count_ret, int* perm)
|
||
|
{
|
||
|
const int l = prob->l;
|
||
|
int max_nr_class = 16;
|
||
|
int nr_class = 0;
|
||
|
int* label = Malloc(int, max_nr_class);
|
||
|
int* count = Malloc(int, max_nr_class);
|
||
|
int* data_label = Malloc(int, l);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
const int this_label = int(prob->y[i]);
|
||
|
int j;
|
||
|
for (j = 0; j < nr_class; j++)
|
||
|
{
|
||
|
if (this_label == label[j])
|
||
|
{
|
||
|
++count[j];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
data_label[i] = j;
|
||
|
if (j == nr_class)
|
||
|
{
|
||
|
if (nr_class == max_nr_class)
|
||
|
{
|
||
|
max_nr_class *= 2;
|
||
|
label = (int*)realloc(label, max_nr_class * sizeof(int));
|
||
|
count = (int*)realloc(count, max_nr_class * sizeof(int));
|
||
|
}
|
||
|
label[nr_class] = this_label;
|
||
|
count[nr_class] = 1;
|
||
|
++nr_class;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Labels are ordered by their first occurrence in the training set.
|
||
|
// However, for two-class sets with -1/+1 labels and -1 appears first,
|
||
|
// we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
|
||
|
//
|
||
|
if (nr_class == 2 && label[0] == -1 && label[1] == 1)
|
||
|
{
|
||
|
swap(label[0], label[1]);
|
||
|
swap(count[0], count[1]);
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (data_label[i] == 0) { data_label[i] = 1; }
|
||
|
else { data_label[i] = 0; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int* start = Malloc(int, nr_class);
|
||
|
start[0] = 0;
|
||
|
for (i = 1; i < nr_class; i++) { start[i] = start[i - 1] + count[i - 1]; }
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
perm[start[data_label[i]]] = i;
|
||
|
++start[data_label[i]];
|
||
|
}
|
||
|
start[0] = 0;
|
||
|
for (i = 1; i < nr_class; i++) { start[i] = start[i - 1] + count[i - 1]; }
|
||
|
|
||
|
*nr_class_ret = nr_class;
|
||
|
*label_ret = label;
|
||
|
*start_ret = start;
|
||
|
*count_ret = count;
|
||
|
free(data_label);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Interface functions
|
||
|
//
|
||
|
svm_model* svm_train(const svm_problem* prob, const svm_parameter* param)
|
||
|
{
|
||
|
svm_model* model = Malloc(svm_model, 1);
|
||
|
model->param = *param;
|
||
|
model->free_sv = 0; // XXX
|
||
|
|
||
|
if (param->svm_type == ONE_CLASS || param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR)
|
||
|
{
|
||
|
// regression or one-class-svm
|
||
|
model->nr_class = 2;
|
||
|
model->label = nullptr;
|
||
|
model->nSV = nullptr;
|
||
|
model->probA = nullptr;
|
||
|
model->probB = nullptr;
|
||
|
model->sv_coef = Malloc(double*, 1);
|
||
|
|
||
|
if (param->probability && (param->svm_type == EPSILON_SVR || param->svm_type == NU_SVR))
|
||
|
{
|
||
|
model->probA = Malloc(double, 1);
|
||
|
model->probA[0] = svm_svr_probability(prob, param);
|
||
|
}
|
||
|
|
||
|
decision_function f = svm_train_one(prob, param, 0, 0);
|
||
|
model->rho = Malloc(double, 1);
|
||
|
model->rho[0] = f.rho;
|
||
|
|
||
|
int nSV = 0;
|
||
|
int i;
|
||
|
for (i = 0; i < prob->l; i++) { if (fabs(f.alpha[i]) > 0) { ++nSV; } }
|
||
|
model->l = nSV;
|
||
|
model->SV = Malloc(svm_node*, nSV);
|
||
|
model->sv_coef[0] = Malloc(double, nSV);
|
||
|
model->sv_indices = Malloc(int, nSV);
|
||
|
int j = 0;
|
||
|
for (i = 0; i < prob->l; i++)
|
||
|
{
|
||
|
if (fabs(f.alpha[i]) > 0)
|
||
|
{
|
||
|
model->SV[j] = prob->x[i];
|
||
|
model->sv_coef[0][j] = f.alpha[i];
|
||
|
model->sv_indices[j] = i + 1;
|
||
|
++j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(f.alpha);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// classification
|
||
|
int l = prob->l;
|
||
|
int nr_class;
|
||
|
int* label = nullptr;
|
||
|
int* start = nullptr;
|
||
|
int* count = nullptr;
|
||
|
int* perm = Malloc(int, l);
|
||
|
|
||
|
// group training data of the same class
|
||
|
svm_group_classes(prob, &nr_class, &label, &start, &count, perm);
|
||
|
if (nr_class == 1) { info("WARNING: training data in only one class. See README for details.\n"); }
|
||
|
|
||
|
svm_node** x = Malloc(svm_node*, l);
|
||
|
int i;
|
||
|
for (i = 0; i < l; i++) { x[i] = prob->x[perm[i]]; }
|
||
|
|
||
|
// calculate weighted C
|
||
|
|
||
|
double* weighted_C = Malloc(double, nr_class);
|
||
|
for (i = 0; i < nr_class; i++) { weighted_C[i] = param->C; }
|
||
|
for (i = 0; i < param->nr_weight; i++)
|
||
|
{
|
||
|
int j;
|
||
|
for (j = 0; j < nr_class; j++) { if (param->weight_label[i] == label[j]) { break; } }
|
||
|
if (j == nr_class) { fprintf(stderr, "WARNING: class label %d specified in weight is not found\n", param->weight_label[i]); }
|
||
|
else { weighted_C[j] *= param->weight[i]; }
|
||
|
}
|
||
|
|
||
|
// train k*(k-1)/2 models
|
||
|
|
||
|
bool* nonzero = Malloc(bool, l);
|
||
|
for (i = 0; i < l; i++) { nonzero[i] = false; }
|
||
|
decision_function* f = Malloc(decision_function, nr_class * (nr_class - 1) / 2);
|
||
|
|
||
|
double *probA = nullptr, *probB = nullptr;
|
||
|
if (param->probability)
|
||
|
{
|
||
|
probA = Malloc(double, nr_class * (nr_class - 1) / 2);
|
||
|
probB = Malloc(double, nr_class * (nr_class - 1) / 2);
|
||
|
}
|
||
|
|
||
|
int p = 0;
|
||
|
for (i = 0; i < nr_class; i++)
|
||
|
{
|
||
|
for (int j = i + 1; j < nr_class; j++)
|
||
|
{
|
||
|
svm_problem sub_prob;
|
||
|
int si = start[i], sj = start[j];
|
||
|
int ci = count[i], cj = count[j];
|
||
|
sub_prob.l = ci + cj;
|
||
|
sub_prob.x = Malloc(svm_node*, sub_prob.l);
|
||
|
sub_prob.y = Malloc(double, sub_prob.l);
|
||
|
int k;
|
||
|
for (k = 0; k < ci; k++)
|
||
|
{
|
||
|
sub_prob.x[k] = x[si + k];
|
||
|
sub_prob.y[k] = +1;
|
||
|
}
|
||
|
for (k = 0; k < cj; k++)
|
||
|
{
|
||
|
sub_prob.x[ci + k] = x[sj + k];
|
||
|
sub_prob.y[ci + k] = -1;
|
||
|
}
|
||
|
|
||
|
if (param->probability) { svm_binary_svc_probability(&sub_prob, param, weighted_C[i], weighted_C[j], probA[p], probB[p]); }
|
||
|
|
||
|
f[p] = svm_train_one(&sub_prob, param, weighted_C[i], weighted_C[j]);
|
||
|
for (k = 0; k < ci; k++) { if (!nonzero[si + k] && fabs(f[p].alpha[k]) > 0) { nonzero[si + k] = true; } }
|
||
|
for (k = 0; k < cj; k++) { if (!nonzero[sj + k] && fabs(f[p].alpha[ci + k]) > 0) { nonzero[sj + k] = true; } }
|
||
|
free(sub_prob.x);
|
||
|
free(sub_prob.y);
|
||
|
++p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// build output
|
||
|
|
||
|
model->nr_class = nr_class;
|
||
|
|
||
|
model->label = Malloc(int, nr_class);
|
||
|
for (i = 0; i < nr_class; i++) { model->label[i] = label[i]; }
|
||
|
|
||
|
model->rho = Malloc(double, nr_class * (nr_class - 1) / 2);
|
||
|
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model->rho[i] = f[i].rho; }
|
||
|
|
||
|
if (param->probability)
|
||
|
{
|
||
|
model->probA = Malloc(double, nr_class * (nr_class - 1) / 2);
|
||
|
model->probB = Malloc(double, nr_class * (nr_class - 1) / 2);
|
||
|
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++)
|
||
|
{
|
||
|
model->probA[i] = probA[i];
|
||
|
model->probB[i] = probB[i];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
model->probA = nullptr;
|
||
|
model->probB = nullptr;
|
||
|
}
|
||
|
|
||
|
int total_sv = 0;
|
||
|
int* nz_count = Malloc(int, nr_class);
|
||
|
model->nSV = Malloc(int, nr_class);
|
||
|
for (i = 0; i < nr_class; i++)
|
||
|
{
|
||
|
int nSV = 0;
|
||
|
for (int j = 0; j < count[i]; j++)
|
||
|
{
|
||
|
if (nonzero[start[i] + j])
|
||
|
{
|
||
|
++nSV;
|
||
|
++total_sv;
|
||
|
}
|
||
|
}
|
||
|
model->nSV[i] = nSV;
|
||
|
nz_count[i] = nSV;
|
||
|
}
|
||
|
|
||
|
info("Total nSV = %d\n", total_sv);
|
||
|
|
||
|
model->l = total_sv;
|
||
|
model->SV = Malloc(svm_node*, total_sv);
|
||
|
model->sv_indices = Malloc(int, total_sv);
|
||
|
p = 0;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
if (nonzero[i])
|
||
|
{
|
||
|
model->SV[p] = x[i];
|
||
|
model->sv_indices[p++] = perm[i] + 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int* nz_start = Malloc(int, nr_class);
|
||
|
nz_start[0] = 0;
|
||
|
for (i = 1; i < nr_class; i++) { nz_start[i] = nz_start[i - 1] + nz_count[i - 1]; }
|
||
|
|
||
|
model->sv_coef = Malloc(double*, nr_class - 1);
|
||
|
for (i = 0; i < nr_class - 1; i++) { model->sv_coef[i] = Malloc(double, total_sv); }
|
||
|
|
||
|
p = 0;
|
||
|
for (i = 0; i < nr_class; i++)
|
||
|
{
|
||
|
for (int j = i + 1; j < nr_class; j++)
|
||
|
{
|
||
|
// classifier (i,j): coefficients with
|
||
|
// i are in sv_coef[j-1][nz_start[i]...],
|
||
|
// j are in sv_coef[i][nz_start[j]...]
|
||
|
|
||
|
int si = start[i];
|
||
|
int sj = start[j];
|
||
|
int ci = count[i];
|
||
|
int cj = count[j];
|
||
|
|
||
|
int q = nz_start[i];
|
||
|
int k;
|
||
|
for (k = 0; k < ci; k++) { if (nonzero[si + k]) { model->sv_coef[j - 1][q++] = f[p].alpha[k]; } }
|
||
|
q = nz_start[j];
|
||
|
for (k = 0; k < cj; k++) { if (nonzero[sj + k]) { model->sv_coef[i][q++] = f[p].alpha[ci + k]; } }
|
||
|
++p;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
free(label);
|
||
|
free(probA);
|
||
|
free(probB);
|
||
|
free(count);
|
||
|
free(perm);
|
||
|
free(start);
|
||
|
free(x);
|
||
|
free(weighted_C);
|
||
|
free(nonzero);
|
||
|
for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { free(f[i].alpha); }
|
||
|
free(f);
|
||
|
free(nz_count);
|
||
|
free(nz_start);
|
||
|
}
|
||
|
return model;
|
||
|
}
|
||
|
|
||
|
// Stratified cross validation
|
||
|
void svm_cross_validation(const svm_problem* prob, const svm_parameter* param, int nr_fold, double* target)
|
||
|
{
|
||
|
int i;
|
||
|
const int l = prob->l;
|
||
|
int* perm = Malloc(int, l);
|
||
|
int nr_class;
|
||
|
if (nr_fold > l)
|
||
|
{
|
||
|
nr_fold = l;
|
||
|
fprintf(stderr, "WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
|
||
|
}
|
||
|
int* fold_start = Malloc(int, nr_fold + 1);
|
||
|
// stratified cv may not give leave-one-out rate
|
||
|
// Each class to l folds -> some folds may have zero elements
|
||
|
if ((param->svm_type == C_SVC || param->svm_type == NU_SVC) && nr_fold < l)
|
||
|
{
|
||
|
int* start = nullptr;
|
||
|
int* label = nullptr;
|
||
|
int* count = nullptr;
|
||
|
svm_group_classes(prob, &nr_class, &label, &start, &count, perm);
|
||
|
|
||
|
// random shuffle and then data grouped by fold using the array perm
|
||
|
int* fold_count = Malloc(int, nr_fold);
|
||
|
int c;
|
||
|
int* index = Malloc(int, l);
|
||
|
for (i = 0; i < l; i++) { index[i] = perm[i]; }
|
||
|
for (c = 0; c < nr_class; c++)
|
||
|
{
|
||
|
for (i = 0; i < count[c]; i++)
|
||
|
{
|
||
|
const int j = i + rand() % (count[c] - i);
|
||
|
swap(index[start[c] + j], index[start[c] + i]);
|
||
|
}
|
||
|
}
|
||
|
for (i = 0; i < nr_fold; i++)
|
||
|
{
|
||
|
fold_count[i] = 0;
|
||
|
for (c = 0; c < nr_class; c++) { fold_count[i] += (i + 1) * count[c] / nr_fold - i * count[c] / nr_fold; }
|
||
|
}
|
||
|
fold_start[0] = 0;
|
||
|
for (i = 1; i <= nr_fold; i++) { fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; }
|
||
|
for (c = 0; c < nr_class; c++)
|
||
|
{
|
||
|
for (i = 0; i < nr_fold; i++)
|
||
|
{
|
||
|
const int begin = start[c] + i * count[c] / nr_fold;
|
||
|
const int end = start[c] + (i + 1) * count[c] / nr_fold;
|
||
|
for (int j = begin; j < end; j++)
|
||
|
{
|
||
|
perm[fold_start[i]] = index[j];
|
||
|
fold_start[i]++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
fold_start[0] = 0;
|
||
|
for (i = 1; i <= nr_fold; i++) { fold_start[i] = fold_start[i - 1] + fold_count[i - 1]; }
|
||
|
free(start);
|
||
|
free(label);
|
||
|
free(count);
|
||
|
free(index);
|
||
|
free(fold_count);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for (i = 0; i < l; i++) { perm[i] = i; }
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
const int j = i + rand() % (l - i);
|
||
|
swap(perm[i], perm[j]);
|
||
|
}
|
||
|
for (i = 0; i <= nr_fold; i++) { fold_start[i] = i * l / nr_fold; }
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nr_fold; i++)
|
||
|
{
|
||
|
const int begin = fold_start[i];
|
||
|
const int end = fold_start[i + 1];
|
||
|
int j;
|
||
|
struct svm_problem subprob;
|
||
|
|
||
|
subprob.l = l - (end - begin);
|
||
|
subprob.x = Malloc(struct svm_node*, subprob.l);
|
||
|
subprob.y = Malloc(double, subprob.l);
|
||
|
|
||
|
int k = 0;
|
||
|
for (j = 0; j < begin; j++)
|
||
|
{
|
||
|
subprob.x[k] = prob->x[perm[j]];
|
||
|
subprob.y[k] = prob->y[perm[j]];
|
||
|
++k;
|
||
|
}
|
||
|
for (j = end; j < l; j++)
|
||
|
{
|
||
|
subprob.x[k] = prob->x[perm[j]];
|
||
|
subprob.y[k] = prob->y[perm[j]];
|
||
|
++k;
|
||
|
}
|
||
|
struct svm_model* submodel = svm_train(&subprob, param);
|
||
|
if (param->probability && (param->svm_type == C_SVC || param->svm_type == NU_SVC))
|
||
|
{
|
||
|
double* prob_estimates = Malloc(double, svm_get_nr_class(submodel));
|
||
|
for (j = begin; j < end; j++) { target[perm[j]] = svm_predict_probability(submodel, prob->x[perm[j]], prob_estimates); }
|
||
|
free(prob_estimates);
|
||
|
}
|
||
|
else { for (j = begin; j < end; j++) { target[perm[j]] = svm_predict(submodel, prob->x[perm[j]]); } }
|
||
|
svm_free_and_destroy_model(&submodel);
|
||
|
free(subprob.x);
|
||
|
free(subprob.y);
|
||
|
}
|
||
|
free(fold_start);
|
||
|
free(perm);
|
||
|
}
|
||
|
|
||
|
|
||
|
int svm_get_svm_type(const svm_model* model) { return model->param.svm_type; }
|
||
|
int svm_get_nr_class(const svm_model* model) { return model->nr_class; }
|
||
|
|
||
|
void svm_get_labels(const svm_model* model, int* label)
|
||
|
{
|
||
|
if (model->label != nullptr) { for (int i = 0; i < model->nr_class; i++) { label[i] = model->label[i]; } }
|
||
|
}
|
||
|
|
||
|
void svm_get_sv_indices(const svm_model* model, int* indices)
|
||
|
{
|
||
|
if (model->sv_indices != nullptr) { for (int i = 0; i < model->l; i++) { indices[i] = model->sv_indices[i]; } }
|
||
|
}
|
||
|
|
||
|
int svm_get_nr_sv(const svm_model* model) { return model->l; }
|
||
|
|
||
|
double svm_get_svr_probability(const svm_model* model)
|
||
|
{
|
||
|
if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA != nullptr) { return model->probA[0]; }
|
||
|
fprintf(stderr, "Model doesn't contain information for SVR probability inference\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
double svm_predict_values(const svm_model* model, const svm_node* x, double* dec_values)
|
||
|
{
|
||
|
int i;
|
||
|
if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR)
|
||
|
{
|
||
|
double* sv_coef = model->sv_coef[0];
|
||
|
double sum = 0;
|
||
|
for (i = 0; i < model->l; i++) { sum += sv_coef[i] * Kernel::k_function(x, model->SV[i], model->param); }
|
||
|
sum -= model->rho[0];
|
||
|
*dec_values = sum;
|
||
|
|
||
|
if (model->param.svm_type == ONE_CLASS) { return (sum > 0) ? 1 : -1; }
|
||
|
return sum;
|
||
|
}
|
||
|
const int nr_class = model->nr_class;
|
||
|
const int l = model->l;
|
||
|
|
||
|
double* kvalue = Malloc(double, l);
|
||
|
for (i = 0; i < l; i++) { kvalue[i] = Kernel::k_function(x, model->SV[i], model->param); }
|
||
|
|
||
|
int* start = Malloc(int, nr_class);
|
||
|
start[0] = 0;
|
||
|
for (i = 1; i < nr_class; i++) { start[i] = start[i - 1] + model->nSV[i - 1]; }
|
||
|
|
||
|
int* vote = Malloc(int, nr_class);
|
||
|
for (i = 0; i < nr_class; i++) { vote[i] = 0; }
|
||
|
|
||
|
int p = 0;
|
||
|
for (i = 0; i < nr_class; i++)
|
||
|
{
|
||
|
for (int j = i + 1; j < nr_class; j++)
|
||
|
{
|
||
|
double sum = 0;
|
||
|
const int si = start[i];
|
||
|
const int sj = start[j];
|
||
|
const int ci = model->nSV[i];
|
||
|
const int cj = model->nSV[j];
|
||
|
|
||
|
int k;
|
||
|
double* coef1 = model->sv_coef[j - 1];
|
||
|
double* coef2 = model->sv_coef[i];
|
||
|
for (k = 0; k < ci; k++) { sum += coef1[si + k] * kvalue[si + k]; }
|
||
|
for (k = 0; k < cj; k++) { sum += coef2[sj + k] * kvalue[sj + k]; }
|
||
|
sum -= model->rho[p];
|
||
|
dec_values[p] = sum;
|
||
|
|
||
|
if (dec_values[p] > 0) { ++vote[i]; }
|
||
|
else { ++vote[j]; }
|
||
|
p++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int vote_max_idx = 0;
|
||
|
for (i = 1; i < nr_class; i++) { if (vote[i] > vote[vote_max_idx]) { vote_max_idx = i; } }
|
||
|
|
||
|
free(kvalue);
|
||
|
free(start);
|
||
|
free(vote);
|
||
|
return model->label[vote_max_idx];
|
||
|
}
|
||
|
|
||
|
double svm_predict(const svm_model* model, const svm_node* x)
|
||
|
{
|
||
|
const int nr_class = model->nr_class;
|
||
|
double* dec_values;
|
||
|
if (model->param.svm_type == ONE_CLASS || model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) { dec_values = Malloc(double, 1); }
|
||
|
else { dec_values = Malloc(double, nr_class * (nr_class - 1) / 2); }
|
||
|
const double pred_result = svm_predict_values(model, x, dec_values);
|
||
|
free(dec_values);
|
||
|
return pred_result;
|
||
|
}
|
||
|
|
||
|
double svm_predict_probability(const svm_model* model, const svm_node* x, double* prob_estimates)
|
||
|
{
|
||
|
if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != nullptr && model->probB != nullptr)
|
||
|
{
|
||
|
int i;
|
||
|
const int nr_class = model->nr_class;
|
||
|
double* dec_values = Malloc(double, nr_class * (nr_class - 1) / 2);
|
||
|
svm_predict_values(model, x, dec_values);
|
||
|
|
||
|
const double min_prob = 1e-7;
|
||
|
double** pairwise_prob = Malloc(double*, nr_class);
|
||
|
for (i = 0; i < nr_class; i++) { pairwise_prob[i] = Malloc(double, nr_class); }
|
||
|
int k = 0;
|
||
|
for (i = 0; i < nr_class; i++)
|
||
|
{
|
||
|
for (int j = i + 1; j < nr_class; j++)
|
||
|
{
|
||
|
pairwise_prob[i][j] = min(max(sigmoid_predict(dec_values[k], model->probA[k], model->probB[k]), min_prob), 1 - min_prob);
|
||
|
pairwise_prob[j][i] = 1 - pairwise_prob[i][j];
|
||
|
k++;
|
||
|
}
|
||
|
}
|
||
|
if (nr_class == 2)
|
||
|
{
|
||
|
prob_estimates[0] = pairwise_prob[0][1];
|
||
|
prob_estimates[1] = pairwise_prob[1][0];
|
||
|
}
|
||
|
else { multiclass_probability(nr_class, pairwise_prob, prob_estimates); }
|
||
|
|
||
|
int prob_max_idx = 0;
|
||
|
for (i = 1; i < nr_class; i++) { if (prob_estimates[i] > prob_estimates[prob_max_idx]) { prob_max_idx = i; } }
|
||
|
for (i = 0; i < nr_class; i++) { free(pairwise_prob[i]); }
|
||
|
free(dec_values);
|
||
|
free(pairwise_prob);
|
||
|
return model->label[prob_max_idx];
|
||
|
}
|
||
|
return svm_predict(model, x);
|
||
|
}
|
||
|
|
||
|
static const char* svm_type_table[] = { "c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr", nullptr };
|
||
|
static const char* kernel_type_table[] = { "linear", "polynomial", "rbf", "sigmoid", "precomputed", nullptr };
|
||
|
|
||
|
int svm_save_model(const char* model_file_name, const svm_model* model)
|
||
|
{
|
||
|
FILE* fp = fopen(model_file_name, "w");
|
||
|
if (fp == nullptr) { return -1; }
|
||
|
|
||
|
char* old_locale = setlocale(LC_ALL, nullptr);
|
||
|
if (old_locale) { old_locale = strdup(old_locale); }
|
||
|
setlocale(LC_ALL, "C");
|
||
|
|
||
|
const svm_parameter& param = model->param;
|
||
|
|
||
|
fprintf(fp, "svm_type %s\n", svm_type_table[param.svm_type]);
|
||
|
fprintf(fp, "kernel_type %s\n", kernel_type_table[param.kernel_type]);
|
||
|
|
||
|
if (param.kernel_type == POLY) { fprintf(fp, "degree %d\n", param.degree); }
|
||
|
if (param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID) { fprintf(fp, "gamma %.17g\n", param.gamma); }
|
||
|
if (param.kernel_type == POLY || param.kernel_type == SIGMOID) { fprintf(fp, "coef0 %.17g\n", param.coef0); }
|
||
|
|
||
|
const int nr_class = model->nr_class;
|
||
|
const int l = model->l;
|
||
|
fprintf(fp, "nr_class %d\n", nr_class);
|
||
|
fprintf(fp, "total_sv %d\n", l);
|
||
|
|
||
|
{
|
||
|
fprintf(fp, "rho");
|
||
|
for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) { fprintf(fp, " %.17g", model->rho[i]); }
|
||
|
fprintf(fp, "\n");
|
||
|
}
|
||
|
|
||
|
if (model->label)
|
||
|
{
|
||
|
fprintf(fp, "label");
|
||
|
for (int i = 0; i < nr_class; i++) { fprintf(fp, " %d", model->label[i]); }
|
||
|
fprintf(fp, "\n");
|
||
|
}
|
||
|
|
||
|
if (model->probA) // regression has probA only
|
||
|
{
|
||
|
fprintf(fp, "probA");
|
||
|
for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) { fprintf(fp, " %.17g", model->probA[i]); }
|
||
|
fprintf(fp, "\n");
|
||
|
}
|
||
|
if (model->probB)
|
||
|
{
|
||
|
fprintf(fp, "probB");
|
||
|
for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) { fprintf(fp, " %.17g", model->probB[i]); }
|
||
|
fprintf(fp, "\n");
|
||
|
}
|
||
|
|
||
|
if (model->nSV)
|
||
|
{
|
||
|
fprintf(fp, "nr_sv");
|
||
|
for (int i = 0; i < nr_class; i++) { fprintf(fp, " %d", model->nSV[i]); }
|
||
|
fprintf(fp, "\n");
|
||
|
}
|
||
|
|
||
|
fprintf(fp, "SV\n");
|
||
|
const double* const* sv_coef = model->sv_coef;
|
||
|
const svm_node* const* SV = model->SV;
|
||
|
|
||
|
for (int i = 0; i < l; i++)
|
||
|
{
|
||
|
for (int j = 0; j < nr_class - 1; j++) { fprintf(fp, "%.17g ", sv_coef[j][i]); }
|
||
|
|
||
|
const svm_node* p = SV[i];
|
||
|
|
||
|
if (param.kernel_type == PRECOMPUTED) { fprintf(fp, "0:%d ", int(p->value)); }
|
||
|
else
|
||
|
{
|
||
|
while (p->index != -1)
|
||
|
{
|
||
|
fprintf(fp, "%d:%.8g ", p->index, p->value);
|
||
|
p++;
|
||
|
}
|
||
|
}
|
||
|
fprintf(fp, "\n");
|
||
|
}
|
||
|
|
||
|
setlocale(LC_ALL, old_locale);
|
||
|
free(old_locale);
|
||
|
|
||
|
if (ferror(fp) != 0 || fclose(fp) != 0) { return -1; }
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static char* line = nullptr;
|
||
|
static int max_line_len;
|
||
|
|
||
|
static char* readline(FILE* input)
|
||
|
{
|
||
|
if (fgets(line, max_line_len, input) == nullptr) { return nullptr; }
|
||
|
|
||
|
while (strrchr(line, '\n') == nullptr)
|
||
|
{
|
||
|
max_line_len *= 2;
|
||
|
line = (char*)realloc(line, max_line_len);
|
||
|
const int len = int(strlen(line));
|
||
|
if (fgets(line + len, max_line_len - len, input) == nullptr) { break; }
|
||
|
}
|
||
|
return line;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// FSCANF helps to handle fscanf failures.
|
||
|
// Its do-while block avoids the ambiguity when
|
||
|
// if (...)
|
||
|
// FSCANF();
|
||
|
// is used
|
||
|
//
|
||
|
#define FSCANF(_stream, _format, _var) do{ if (fscanf(_stream, _format, _var) != 1) return false; }while(0)
|
||
|
bool read_model_header(FILE* fp, svm_model* model)
|
||
|
{
|
||
|
svm_parameter& param = model->param;
|
||
|
// parameters for training only won't be assigned, but arrays are assigned as NULL for safety
|
||
|
param.nr_weight = 0;
|
||
|
param.weight_label = nullptr;
|
||
|
param.weight = nullptr;
|
||
|
|
||
|
char cmd[81];
|
||
|
while (true)
|
||
|
{
|
||
|
FSCANF(fp, "%80s", cmd);
|
||
|
|
||
|
if (strcmp(cmd, "svm_type") == 0)
|
||
|
{
|
||
|
FSCANF(fp, "%80s", cmd);
|
||
|
int i;
|
||
|
for (i = 0; svm_type_table[i]; i++)
|
||
|
{
|
||
|
if (strcmp(svm_type_table[i], cmd) == 0)
|
||
|
{
|
||
|
param.svm_type = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (svm_type_table[i] == nullptr)
|
||
|
{
|
||
|
fprintf(stderr, "unknown svm type.\n");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
else if (strcmp(cmd, "kernel_type") == 0)
|
||
|
{
|
||
|
FSCANF(fp, "%80s", cmd);
|
||
|
int i;
|
||
|
for (i = 0; kernel_type_table[i]; i++)
|
||
|
{
|
||
|
if (strcmp(kernel_type_table[i], cmd) == 0)
|
||
|
{
|
||
|
param.kernel_type = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (kernel_type_table[i] == nullptr)
|
||
|
{
|
||
|
fprintf(stderr, "unknown kernel function.\n");
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
else if (strcmp(cmd, "degree") == 0) { FSCANF(fp, "%d", ¶m.degree); }
|
||
|
else if (strcmp(cmd, "gamma") == 0) { FSCANF(fp, "%lf", ¶m.gamma); }
|
||
|
else if (strcmp(cmd, "coef0") == 0) { FSCANF(fp, "%lf", ¶m.coef0); }
|
||
|
else if (strcmp(cmd, "nr_class") == 0) { FSCANF(fp, "%d", &model->nr_class); }
|
||
|
else if (strcmp(cmd, "total_sv") == 0) { FSCANF(fp, "%d", &model->l); }
|
||
|
else if (strcmp(cmd, "rho") == 0)
|
||
|
{
|
||
|
const int n = model->nr_class * (model->nr_class - 1) / 2;
|
||
|
model->rho = Malloc(double, n);
|
||
|
for (int i = 0; i < n; i++) { FSCANF(fp, "%lf", &model->rho[i]); }
|
||
|
}
|
||
|
else if (strcmp(cmd, "label") == 0)
|
||
|
{
|
||
|
const int n = model->nr_class;
|
||
|
model->label = Malloc(int, n);
|
||
|
for (int i = 0; i < n; i++) { FSCANF(fp, "%d", &model->label[i]); }
|
||
|
}
|
||
|
else if (strcmp(cmd, "probA") == 0)
|
||
|
{
|
||
|
const int n = model->nr_class * (model->nr_class - 1) / 2;
|
||
|
model->probA = Malloc(double, n);
|
||
|
for (int i = 0; i < n; i++) { FSCANF(fp, "%lf", &model->probA[i]); }
|
||
|
}
|
||
|
else if (strcmp(cmd, "probB") == 0)
|
||
|
{
|
||
|
const int n = model->nr_class * (model->nr_class - 1) / 2;
|
||
|
model->probB = Malloc(double, n);
|
||
|
for (int i = 0; i < n; i++) { FSCANF(fp, "%lf", &model->probB[i]); }
|
||
|
}
|
||
|
else if (strcmp(cmd, "nr_sv") == 0)
|
||
|
{
|
||
|
const int n = model->nr_class;
|
||
|
model->nSV = Malloc(int, n);
|
||
|
for (int i = 0; i < n; i++) { FSCANF(fp, "%d", &model->nSV[i]); }
|
||
|
}
|
||
|
else if (strcmp(cmd, "SV") == 0)
|
||
|
{
|
||
|
while (true)
|
||
|
{
|
||
|
const int c = getc(fp);
|
||
|
if (c == EOF || c == '\n') { break; }
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fprintf(stderr, "unknown text in model file: [%s]\n", cmd);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
svm_model* svm_load_model(const char* model_file_name)
|
||
|
{
|
||
|
FILE* fp = fopen(model_file_name, "rb");
|
||
|
if (fp == nullptr) { return nullptr; }
|
||
|
|
||
|
char* old_locale = setlocale(LC_ALL, nullptr);
|
||
|
if (old_locale) { old_locale = strdup(old_locale); }
|
||
|
setlocale(LC_ALL, "C");
|
||
|
|
||
|
// read parameters
|
||
|
|
||
|
svm_model* model = Malloc(svm_model, 1);
|
||
|
model->rho = nullptr;
|
||
|
model->probA = nullptr;
|
||
|
model->probB = nullptr;
|
||
|
model->sv_indices = nullptr;
|
||
|
model->label = nullptr;
|
||
|
model->nSV = nullptr;
|
||
|
|
||
|
// read header
|
||
|
if (!read_model_header(fp, model))
|
||
|
{
|
||
|
fprintf(stderr, "ERROR: fscanf failed to read model\n");
|
||
|
setlocale(LC_ALL, old_locale);
|
||
|
free(old_locale);
|
||
|
free(model->rho);
|
||
|
free(model->label);
|
||
|
free(model->nSV);
|
||
|
free(model);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// read sv_coef and SV
|
||
|
|
||
|
int elements = 0;
|
||
|
const long pos = ftell(fp);
|
||
|
|
||
|
max_line_len = 1024;
|
||
|
line = Malloc(char, max_line_len);
|
||
|
char *p, *endptr;
|
||
|
|
||
|
while (readline(fp) != nullptr)
|
||
|
{
|
||
|
p = strtok(line, ":");
|
||
|
while (true)
|
||
|
{
|
||
|
p = strtok(nullptr, ":");
|
||
|
if (p == nullptr) { break; }
|
||
|
++elements;
|
||
|
}
|
||
|
}
|
||
|
elements += model->l;
|
||
|
|
||
|
fseek(fp, pos, SEEK_SET);
|
||
|
|
||
|
const int m = model->nr_class - 1;
|
||
|
const int l = model->l;
|
||
|
model->sv_coef = Malloc(double*, m);
|
||
|
int i;
|
||
|
for (i = 0; i < m; i++) { model->sv_coef[i] = Malloc(double, l); }
|
||
|
model->SV = Malloc(svm_node*, l);
|
||
|
svm_node* x_space = nullptr;
|
||
|
if (l > 0) { x_space = Malloc(svm_node, elements); }
|
||
|
|
||
|
int j = 0;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
readline(fp);
|
||
|
model->SV[i] = &x_space[j];
|
||
|
|
||
|
p = strtok(line, " \t");
|
||
|
model->sv_coef[0][i] = strtod(p, &endptr);
|
||
|
for (int k = 1; k < m; k++)
|
||
|
{
|
||
|
p = strtok(nullptr, " \t");
|
||
|
model->sv_coef[k][i] = strtod(p, &endptr);
|
||
|
}
|
||
|
|
||
|
while (true)
|
||
|
{
|
||
|
char* idx = strtok(nullptr, ":");
|
||
|
char* val = strtok(nullptr, " \t");
|
||
|
|
||
|
if (val == nullptr) { break; }
|
||
|
x_space[j].index = int(strtol(idx, &endptr, 10));
|
||
|
x_space[j].value = strtod(val, &endptr);
|
||
|
|
||
|
++j;
|
||
|
}
|
||
|
x_space[j++].index = -1;
|
||
|
}
|
||
|
free(line);
|
||
|
|
||
|
setlocale(LC_ALL, old_locale);
|
||
|
free(old_locale);
|
||
|
|
||
|
if (ferror(fp) != 0 || fclose(fp) != 0) { return nullptr; }
|
||
|
|
||
|
model->free_sv = 1; // XXX
|
||
|
return model;
|
||
|
}
|
||
|
|
||
|
void svm_free_model_content(svm_model* model_ptr)
|
||
|
{
|
||
|
if (model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != nullptr) { free((void*)(model_ptr->SV[0])); }
|
||
|
if (model_ptr->sv_coef) { for (int i = 0; i < model_ptr->nr_class - 1; i++) { free(model_ptr->sv_coef[i]); } }
|
||
|
|
||
|
free(model_ptr->SV);
|
||
|
model_ptr->SV = nullptr;
|
||
|
|
||
|
free(model_ptr->sv_coef);
|
||
|
model_ptr->sv_coef = nullptr;
|
||
|
|
||
|
free(model_ptr->rho);
|
||
|
model_ptr->rho = nullptr;
|
||
|
|
||
|
free(model_ptr->label);
|
||
|
model_ptr->label = nullptr;
|
||
|
|
||
|
free(model_ptr->probA);
|
||
|
model_ptr->probA = nullptr;
|
||
|
|
||
|
free(model_ptr->probB);
|
||
|
model_ptr->probB = nullptr;
|
||
|
|
||
|
free(model_ptr->sv_indices);
|
||
|
model_ptr->sv_indices = nullptr;
|
||
|
|
||
|
free(model_ptr->nSV);
|
||
|
model_ptr->nSV = nullptr;
|
||
|
}
|
||
|
|
||
|
void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
|
||
|
{
|
||
|
if (model_ptr_ptr != nullptr && *model_ptr_ptr != nullptr)
|
||
|
{
|
||
|
svm_free_model_content(*model_ptr_ptr);
|
||
|
free(*model_ptr_ptr);
|
||
|
*model_ptr_ptr = nullptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void svm_destroy_param(svm_parameter* param)
|
||
|
{
|
||
|
free(param->weight_label);
|
||
|
free(param->weight);
|
||
|
}
|
||
|
|
||
|
const char* svm_check_parameter(const svm_problem* prob, const svm_parameter* param)
|
||
|
{
|
||
|
// svm_type
|
||
|
|
||
|
const int svm_type = param->svm_type;
|
||
|
if (svm_type != C_SVC && svm_type != NU_SVC && svm_type != ONE_CLASS && svm_type != EPSILON_SVR && svm_type != NU_SVR) { return "unknown svm type"; }
|
||
|
|
||
|
// kernel_type, degree
|
||
|
|
||
|
const int kernel_type = param->kernel_type;
|
||
|
if (kernel_type != LINEAR && kernel_type != POLY && kernel_type != RBF && kernel_type != SIGMOID && kernel_type != PRECOMPUTED)
|
||
|
{
|
||
|
return "unknown kernel type";
|
||
|
}
|
||
|
|
||
|
if ((kernel_type == POLY || kernel_type == RBF || kernel_type == SIGMOID) && param->gamma < 0) { return "gamma < 0"; }
|
||
|
if (kernel_type == POLY && param->degree < 0) { return "degree of polynomial kernel < 0"; }
|
||
|
|
||
|
// cache_size,eps,C,nu,p,shrinking
|
||
|
|
||
|
if (param->cache_size <= 0) { return "cache_size <= 0"; }
|
||
|
if (param->eps <= 0) { return "eps <= 0"; }
|
||
|
if (svm_type == C_SVC || svm_type == EPSILON_SVR || svm_type == NU_SVR) { if (param->C <= 0) { return "C <= 0"; } }
|
||
|
if (svm_type == NU_SVC || svm_type == ONE_CLASS || svm_type == NU_SVR) { if (param->nu <= 0 || param->nu > 1) { return "nu <= 0 or nu > 1"; } }
|
||
|
if (svm_type == EPSILON_SVR) { if (param->p < 0) { return "p < 0"; } }
|
||
|
if (param->shrinking != 0 && param->shrinking != 1) { return "shrinking != 0 and shrinking != 1"; }
|
||
|
if (param->probability != 0 && param->probability != 1) { return "probability != 0 and probability != 1"; }
|
||
|
if (param->probability == 1 && svm_type == ONE_CLASS) { return "one-class SVM probability output not supported yet"; }
|
||
|
|
||
|
|
||
|
// check whether nu-svc is feasible
|
||
|
|
||
|
if (svm_type == NU_SVC)
|
||
|
{
|
||
|
const int l = prob->l;
|
||
|
int max_nr_class = 16;
|
||
|
int nr_class = 0;
|
||
|
int* label = Malloc(int, max_nr_class);
|
||
|
int* count = Malloc(int, max_nr_class);
|
||
|
|
||
|
int i;
|
||
|
for (i = 0; i < l; i++)
|
||
|
{
|
||
|
const int this_label = int(prob->y[i]);
|
||
|
int j;
|
||
|
for (j = 0; j < nr_class; j++)
|
||
|
{
|
||
|
if (this_label == label[j])
|
||
|
{
|
||
|
++count[j];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (j == nr_class)
|
||
|
{
|
||
|
if (nr_class == max_nr_class)
|
||
|
{
|
||
|
max_nr_class *= 2;
|
||
|
label = (int*)realloc(label, max_nr_class * sizeof(int));
|
||
|
count = (int*)realloc(count, max_nr_class * sizeof(int));
|
||
|
}
|
||
|
label[nr_class] = this_label;
|
||
|
count[nr_class] = 1;
|
||
|
++nr_class;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nr_class; i++)
|
||
|
{
|
||
|
const int n1 = count[i];
|
||
|
for (int j = i + 1; j < nr_class; j++)
|
||
|
{
|
||
|
const int n2 = count[j];
|
||
|
if (param->nu * (n1 + n2) / 2 > min(n1, n2))
|
||
|
{
|
||
|
free(label);
|
||
|
free(count);
|
||
|
return "specified nu is infeasible";
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
free(label);
|
||
|
free(count);
|
||
|
}
|
||
|
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
int svm_check_probability_model(const svm_model* model)
|
||
|
{
|
||
|
return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) && model->probA != nullptr && model->probB != nullptr)
|
||
|
|| ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) && model->probA != nullptr);
|
||
|
}
|
||
|
|
||
|
void svm_set_print_string_function(void (*print_func)(const char*))
|
||
|
{
|
||
|
if (print_func == nullptr) { svm_print_string = &print_string_stdout; }
|
||
|
else { svm_print_string = print_func; }
|
||
|
}
|