|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- #pragma once
-
- #define LIBSVM_VERSION 324
-
- extern "C" {
-
- extern int libsvm_version;
-
- struct svm_node
- {
- int index;
- double value;
- };
-
- struct svm_problem
- {
- int l;
- double* y;
- struct svm_node** x;
- };
-
- enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; // svm_type
- enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; // kernel_type
-
- /* Table help you to transforms Enums to strings */
- //extern static const char *svm_type_table[5];
- //extern static const char *kernel_type_table[5];
- inline const char* get_svm_type(const unsigned int code)
- {
- static const char* svm_type_table[] = { "c_svc", "nu_svc", "one_class", "epsilon_svr", "nu_svr", nullptr };
- return svm_type_table[code];
- }
-
- inline const char* get_kernel_type(const unsigned int code)
- {
- static const char* types[] = { "linear", "polynomial", "rbf", "sigmoid", "precomputed", nullptr };
- return types[code];
- }
-
- struct svm_parameter
- {
- int svm_type;
- int kernel_type;
- int degree; // for poly
- double gamma; // for poly/rbf/sigmoid
- double coef0; // for poly/sigmoid
-
- // these are for training only
- double cache_size; // in MB
- double eps; // stopping criteria
- double C; // for C_SVC, EPSILON_SVR and NU_SVR
- int nr_weight; // for C_SVC
- int* weight_label; // for C_SVC
- double* weight; // for C_SVC
- double nu; // for NU_SVC, ONE_CLASS, and NU_SVR
- double p; // for EPSILON_SVR
- int shrinking; // use the shrinking heuristics
- int probability; // do probability estimates
- };
-
- //
- // svm_model
- //
- struct svm_model
- {
- struct svm_parameter param; // parameter
- int nr_class; // number of classes, = 2 in regression/one class svm
- int l; // total #SV
- struct svm_node** SV; // SVs (SV[l])
- double** sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l])
- double* rho; // constants in decision functions (rho[k*(k-1)/2])
- double* probA; // pariwise probability information
- double* probB;
- int* sv_indices; // sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set
-
- // for classification only
-
- int* label; // label of each class (label[k])
- int* nSV; // number of SVs for each class (nSV[k])
- // nSV[0] + nSV[1] + ... + nSV[k-1] = l
- // XXX
- int free_sv; // 1 if svm_model is created by svm_load_model
- // 0 if svm_model is created by svm_train
- };
-
- struct svm_model* svm_train(const struct svm_problem* prob, const struct svm_parameter* param);
- void svm_cross_validation(const struct svm_problem* prob, const struct svm_parameter* param, int nr_fold, double* target);
-
- int svm_save_model(const char* model_file_name, const struct svm_model* model);
- struct svm_model* svm_load_model(const char* model_file_name);
-
- int svm_get_svm_type(const struct svm_model* model);
- int svm_get_nr_class(const struct svm_model* model);
- void svm_get_labels(const struct svm_model* model, int* label);
- void svm_get_sv_indices(const struct svm_model* model, int* indices);
- int svm_get_nr_sv(const struct svm_model* model);
- double svm_get_svr_probability(const struct svm_model* model);
-
- double svm_predict_values(const struct svm_model* model, const struct svm_node* x, double* dec_values);
- double svm_predict(const struct svm_model* model, const struct svm_node* x);
- double svm_predict_probability(const struct svm_model* model, const struct svm_node* x, double* prob_estimates);
-
- void svm_free_model_content(struct svm_model* model_ptr);
- void svm_free_and_destroy_model(struct svm_model** model_ptr_ptr);
- void svm_destroy_param(struct svm_parameter* param);
-
- const char* svm_check_parameter(const struct svm_problem* prob, const struct svm_parameter* param);
- int svm_check_probability_model(const struct svm_model* model);
-
- void svm_set_print_string_function(void (*print_func)(const char*));
-
- }
|