|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123 |
- //$ nobt
-
- /**
- * @file r8bbase.h
- *
- * @brief The "base" inclusion file with basic classes and functions.
- *
- * This is the "base" inclusion file for the "r8brain-free-src" sample rate
- * converter. This inclusion file contains implementations of several small
- * utility classes and functions used by the library.
- *
- * r8brain-free-src Copyright (c) 2013-2014 Aleksey Vaneev
- * See the "License.txt" file for license.
- *
- * @mainpage
- *
- * @section intro_sec Introduction
- *
- * Open source (under the MIT license) high-quality professional audio sample
- * rate converter (SRC) (resampling) library. Features routines for SRC, both
- * up- and downsampling, to/from any sample rate, including non-integer sample
- * rates: it can be also used for conversion to/from SACD sample rate and even
- * go beyond that. SRC routines were implemented in multi-platform C++ code,
- * and have a high level of optimality.
- *
- * The structure of this library's objects is such that they can be frequently
- * created and destroyed in large applications with a minimal performance
- * impact due to a high level of reusability of its most
- * "initialization-expensive" objects: the fast Fourier transform and FIR
- * filter objects.
- *
- * The SRC algorithm at first produces 2X oversampled (relative to the source
- * sample rate, or the destination sample rate if the downsampling is
- * performed) signal and then performs interpolation using a bank of short
- * (14 to 28 taps, depending on the required precision)
- * polynomial-interpolated sinc function-based fractional delay filters. This puts the
- * algorithm into the league of the fastest among the most precise SRC
- * algorithms. The more precise alternative being only the whole
- * number-factored SRC, which can be slower.
- *
- * @section requirements Requirements
- *
- * C++ compiler and system with the "double" floating point type (53-bit
- * mantissa) support. No explicit code for the "float" type is present in this
- * library, because as practice has shown the "float"-based code performs
- * considerably slower on a modern processor, at least in this library.
- * However, if the "double" type really represents the "float" type (24-bit
- * mantissa) in a given compiler, on a given system, the library won't become
- * broken, only the conversion quality may become degraded. This library
- * always uses the "sizeof( double )" operator to obtain "double" floating
- * point type's size in bytes. This library does not have dependencies beside
- * the standard C library, the "windows.h" on Windows and the "pthread.h" on
- * Mac OS X and Linux.
- *
- * @section usage Usage Information
- *
- * The sample rate converter (resampler) is represented by the
- * r8b::CDSPResampler class, which is a single front-end class for the whole
- * library. You do not basically need to use nor understand any other classes
- * beside this class. Several derived classes that have varying levels of
- * precision are also available.
- *
- * The code of the library resides in the "r8b" C++ namespace, effectively
- * isolating it from all other code. The code is thread-safe. A separate
- * resampler object should be created for each audio channel or stream being
- * processed.
- *
- * Note that you will need to compile the "r8bbase.cpp" source file and
- * include the resulting object file into your application build. This source
- * file includes definitions of several global static objects used by the
- * library. You may also need to include to your project: the "Kernel32"
- * library (on Windows) and the "pthread" library on Mac OS X and Linux.
- *
- * The library is able to process signal of any scale and loudness: it is not
- * limited to just a "usual" -1.0 to 1.0 range.
- *
- * The code of this library was commented in the Doxygen style. To generate
- * the documentation locally you may run the "doxygen ./other/r8bdoxy.txt"
- * command from the library's directory.
- *
- * Preliminary tests show that the r8b::CDSPResampler24 resampler class
- * achieves 15.6*n_cores Mflops when converting 1 channel of audio from 44100
- * to 96000 sample rate, on a typical Intel Core i7-4770K processor-based
- * system without overclocking. This approximately translates to a real-time
- * resampling of 160*n_cores audio streams, at 100% CPU load.
- *
- * @section dll Dynamic Link Library
- *
- * The functions of this SRC library are also accessible in simplified form
- * via the DLL file on Windows, requiring a processor with SSE2 support.
- * Delphi Pascal interface unit file for the DLL file is available. DLL and
- * C LIB files are distributed in a separate ZIP file on the project's home
- * page. On non-Windows systems it is preferrable to use the C++ library
- * directly.
- *
- * @section realtime Real-time Applications
- *
- * The resampler class of this library was designed as asynchronous processor:
- * it may produce any number of output samples, depending on the input sample
- * data length and the resampling parameters. The resampler must be fed with
- * the input sample data until enough output sample data was produced, with
- * any excess output samples used before feeding the resampler with more input
- * data. A "relief" factor here is that the resampler removes the initial
- * processing latency automatically, and that after initial moments of
- * processing the output becomes steady, with only minor output sample data
- * length fluctuations.
- *
- * Note that the r8b::CDSPResampler::getInLenBeforeOutStart() function can be
- * used to estimate the number of input samples that should be provided to the
- * resampler before the actual output starts.
- *
- * @section notes Notes
- *
- * When using the r8b::CDSPResampler<> class directly, you may select the
- * transition band/steepness of the low-pass (reconstruction) filter,
- * expressed as a percentage of the full spectral bandwidth of the input
- * signal (or the output signal if the downsampling is performed), and the
- * desired stop-band attenuation in decibel.
- *
- * The transition band is specified as the normalized spectral space of the
- * input signal (or the output signal if the downsampling is performed)
- * between the low-pass filter's -3 dB point and the Nyquist frequency, and
- * ranges from 0.5% to 45%. Stop-band attenuation can be specified in the
- * range 49 to 218 decibel.
- *
- * This SRC library also implements a faster "power of 2" resampling (e.g. 2X,
- * 4X, 8X, 16X, etc. upsampling and downsampling).
- *
- * This library was tested for compatibility with GNU C++, Microsoft Visual
- * C++ and Intel C++ compilers, on 32- and 64-bit Windows, Mac OS X and CentOS
- * Linux.
- *
- * All code is fully "inline", without the need to compile many source files.
- * The memory footprint is quite modest.
- *
- * @section users Users
- *
- * This library is used by:
- *
- * * http://www.martinic.com/combov/ Combo Model V VSTi instrument
- * * http://midithru.net/Home/AsioLink WDM Asio Link Driver
- *
- * @section license License
- *
- * The MIT License (MIT)
- *
- * r8brain-free-src Copyright (c) 2013-2014 Aleksey Vaneev
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- * DEALINGS IN THE SOFTWARE.
- *
- * Please credit the creator of this library in your documentation in the
- * following way: "Sample rate converter designed by Aleksey Vaneev of
- * Voxengo"
- *
- * @version 1.6
- */
-
- #pragma once
-
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
- #include "r8bconf.h"
-
- #if defined( R8B_WIN )
- #include <windows.h>
- #else // R8B_WIN
- #include <pthread.h>
- #endif // R8B_WIN
-
- /**
- * @brief The "r8brain-free-src" library namespace.
- *
- * The "r8brain-free-src" sample rate converter library namespace.
- */
-
- namespace r8b
- {
- #if !defined( M_PI )
- /**
- * The macro equals to "pi" constant, fits 53-bit floating point mantissa.
- */
-
- #define M_PI 3.14159265358979324
- #endif // M_PI
-
- #if !defined( M_2PI )
- /**
- * The M_2PI macro equals to "2 * pi" constant, fits 53-bit floating point
- * mantissa.
- */
-
- #define M_2PI 6.28318530717958648
- #endif // M_2PI
-
- #if !defined( M_3PI )
- /**
- * The M_3PI macro equals to "3 * pi" constant, fits 53-bit floating point
- * mantissa.
- */
-
- #define M_3PI 9.42477796076937972
- #endif // M_3PI
-
- #if !defined( M_4PI )
- /**
- * The M_4PI macro equals to "4 * pi" constant, fits 53-bit floating point
- * mantissa.
- */
-
- #define M_4PI 12.56637061435917295
- #endif // M_4PI
-
- #if !defined( M_PId2 )
- /**
- * The macro equals to "pi divided by 2" constant, fits 53-bit floating
- * point mantissa.
- */
-
- #define M_PId2 1.57079632679489662
- #endif // M_PId2
-
- /**
- * A special macro that defines empty copy-constructor and copy operator with
- * the "private:" prefix. This macro should be used in classes that cannot be
- * copied in a standard C++ way.
- *
- * This macro does not need to be defined in classes derived from a class
- * where such macro was already used.
- *
- * @param ClassName The name of the class which uses this macro.
- */
-
- #define R8BNOCTOR( ClassName ) \
- private: \
- ClassName( const ClassName& ) { } \
- ClassName& operator = ( const ClassName& ) { return( *this ); }
-
- /**
- * @brief The default base class for objects created on heap.
- *
- * Class that implements "new" and "delete" operators that use standard
- * malloc() and free() functions.
- */
-
- class CStdClassAllocator
- {
- public:
- /**
- * @param n The size of the object, in bytes.
- * @param p Pointer to object's pre-allocated memory block.
- * @return Pointer to object.
- */
-
- void* operator new(size_t, void* p) { return (p); }
-
- /**
- * @param n The size of the object, in bytes.
- * @return Pointer to the allocated memory block for the object.
- */
-
- void* operator new(size_t n) { return (malloc(n)); }
-
- /**
- * @param n The size of the object, in bytes.
- * @return Pointer to the allocated memory block for the object.
- */
-
- void* operator new[](size_t n) { return (malloc(n)); }
-
- /**
- * Operator frees a previously allocated memory block for the object.
- *
- * @param p Pointer to the allocated memory block for the object.
- */
-
- void operator delete(void* p) { free(p); }
-
- /**
- * Operator frees a previously allocated memory block for the object.
- *
- * @param p Pointer to the allocated memory block for the object.
- */
-
- void operator delete[](void* p) { free(p); }
- };
-
- /**
- * @brief The default base class for objects that allocate blocks of memory.
- *
- * Memory buffer allocator that uses "stdlib" standard memory functions.
- */
-
- class CStdMemAllocator : public CStdClassAllocator
- {
- public:
- /**
- * Function allocates memory block.
- *
- * @param Size The size of the block, in bytes.
- * @result The pointer to the allocated block.
- */
-
- static void* allocmem(const size_t Size) { return (malloc(Size)); }
-
- /**
- * Function reallocates a previously allocated memory block.
- *
- * @param p Pointer to the allocated block, can be NULL.
- * @param Size The new size of the block, in bytes.
- * @result The pointer to the (re)allocated block.
- */
-
- static void* reallocmem(void* p, const size_t Size) { return (realloc(p, Size)); }
-
- /**
- * Function frees a previously allocated memory block.
- *
- * @param p Pointer to the allocated block, can be NULL.
- */
-
- static void freemem(void* p) { free(p); }
- };
-
- /**
- * @brief Templated memory buffer class for element buffers of fixed capacity.
- *
- * Fixed memory buffer object. Supports allocation of a fixed amount of
- * memory. Does not store buffer's capacity - the user should know the actual
- * capacity of the buffer. Does not feature "internal" storage, memory is
- * always allocated via the R8B_MEMALLOCCLASS class's functions. Thus the
- * object of this class can be moved in memory.
- *
- * This class manages memory space only - it does not perform element class
- * construction nor destruction operations.
- *
- * @param T The class of the stored elements (e.g. "double").
- */
-
- template <class T>
- class CFixedBuffer : public R8B_MEMALLOCCLASS
- {
- R8BNOCTOR(CFixedBuffer)
-
- public:
- CFixedBuffer() : Data(nullptr) { }
-
- /**
- * Constructor allocates memory so that the specified number of elements
- * of type T can be stored in *this buffer object.
- *
- * @param Capacity Storage for this number of elements to allocate.
- */
-
- CFixedBuffer(const int Capacity)
- {
- R8BASSERT(Capacity > 0 || Capacity == 0);
-
- Data = (T*)allocmem(Capacity * sizeof(T));
-
- R8BASSERT(Data != nullptr || Capacity == 0);
- }
-
- ~CFixedBuffer() { freemem(Data); }
-
- /**
- * Function allocates memory so that the specified number of elements of
- * type T can be stored in *this buffer object.
- *
- * @param Capacity Storage for this number of elements to allocate.
- */
-
- void alloc(const int Capacity)
- {
- R8BASSERT(Capacity > 0 || Capacity == 0);
-
- freemem(Data);
- Data = (T*)allocmem(Capacity * sizeof(T));
-
- R8BASSERT(Data != nullptr || Capacity == 0);
- }
-
- /**
- * Function deallocates a previously allocated buffer.
- */
-
- void free()
- {
- freemem(Data);
- Data = NULL;
- }
-
- /**
- * @return Pointer to the first element of the allocated buffer, nullptr if
- * not allocated.
- */
-
- T* getPtr() const { return (Data); }
-
- /**
- * @return Pointer to the first element of the allocated buffer, nullptr if
- * not allocated.
- */
-
- operator T*() const { return (Data); }
-
- private:
- T* Data = nullptr; ///< Element buffer pointer.
- ///<
- };
-
- /**
- * @brief Pointer-to-object "keeper" class with automatic deletion.
- *
- * An auxiliary class that can be used for keeping a pointer to object that
- * should be deleted together with the "keeper" by calling object's "delete"
- * operator.
- *
- * @param T Pointer type to operate with, must include the asterisk (e.g.
- * "CDSPFIRFilter*").
- */
-
- template <class T>
- class CPtrKeeper
- {
- R8BNOCTOR(CPtrKeeper)
-
- public:
- CPtrKeeper() : Object(NULL) { }
-
- /**
- * Constructor assigns a pointer to object to *this keeper.
- *
- * @param aObject Pointer to object to keep, can be NULL.
- */
-
- template <class T2>
- CPtrKeeper(T2 const aObject) : Object(aObject) { }
-
- ~CPtrKeeper() { delete Object; }
-
- /**
- * Function assigns a pointer to object to *this keeper. A previously
- * keeped pointer will be reset and object deleted.
- *
- * @param aObject Pointer to object to keep, can be NULL.
- */
-
- template <class T2>
- void operator =(T2 const aObject)
- {
- reset();
- Object = aObject;
- }
-
- /**
- * @return Pointer to keeped object, nullptr if no object is being kept.
- */
-
- T operator ->() const { return (Object); }
-
- /**
- * @return Pointer to keeped object, nullptr if no object is being kept.
- */
-
- operator T() const { return (Object); }
-
- /**
- * Function resets the keeped pointer and deletes the keeped object.
- */
-
- void reset()
- {
- T DelObj = Object;
- Object = NULL;
- delete DelObj;
- }
-
- /**
- * @return Function returns the keeped pointer and resets it in *this
- * keeper without object deletion.
- */
-
- T unkeep()
- {
- T ResObject = Object;
- Object = NULL;
- return (ResObject);
- }
-
- private:
- T Object; ///< Pointer to keeped object.
- ///<
- };
-
- /**
- * @brief Multi-threaded synchronization object class.
- *
- * This class uses standard OS thread-locking (mutex) mechanism which is
- * fairly efficient in most cases.
- *
- * The acquire() function can be called recursively, in the same thread, for
- * this kind of thread-locking mechanism. This will not produce a dead-lock.
- */
-
- class CSyncObject
- {
- R8BNOCTOR(CSyncObject)
-
- public:
- CSyncObject()
- {
- #if defined( R8B_WIN )
- InitializeCriticalSectionAndSpinCount(&CritSec, 4000);
- #else // R8B_WIN
- pthread_mutexattr_t MutexAttrs;
- pthread_mutexattr_init( &MutexAttrs );
- pthread_mutexattr_settype( &MutexAttrs, PTHREAD_MUTEX_RECURSIVE );
- pthread_mutex_init( &Mutex, &MutexAttrs );
- pthread_mutexattr_destroy( &MutexAttrs );
- #endif // R8B_WIN
- }
-
- ~CSyncObject()
- {
- #if defined( R8B_WIN )
- DeleteCriticalSection(&CritSec);
- #else // R8B_WIN
- pthread_mutex_destroy( &Mutex );
- #endif // R8B_WIN
- }
-
- /**
- * Function "acquires" *this thread synchronizer object immediately or
- * waits until another thread releases it.
- */
-
- void acquire()
- {
- #if defined( R8B_WIN )
- EnterCriticalSection(&CritSec);
- #else // R8B_WIN
- pthread_mutex_lock( &Mutex );
- #endif // R8B_WIN
- }
-
- /**
- * Function "releases" *this previously acquired thread synchronizer
- * object.
- */
-
- void release()
- {
- #if defined( R8B_WIN )
- LeaveCriticalSection(&CritSec);
- #else // R8B_WIN
- pthread_mutex_unlock( &Mutex );
- #endif // R8B_WIN
- }
-
- private:
- #if defined( R8B_WIN )
- CRITICAL_SECTION CritSec; ///< Standard Windows critical section
- ///< structure.
- ///<
- #else // R8B_WIN
- pthread_mutex_t Mutex; ///< pthread.h mutex object.
- ///<
- #endif // R8B_WIN
- };
-
- /**
- * @brief A "keeper" class for CSyncObject-based synchronization.
- *
- * Sync keeper class. The object of this class can be used as auto-init and
- * auto-deinit object for calling the acquire() and release() functions of an
- * object of the CSyncObject class. This "keeper" object is best used in
- * functions as an "automatic" object allocated on the stack, possibly via the
- * R8BSYNC() macro.
- */
-
- class CSyncKeeper
- {
- R8BNOCTOR(CSyncKeeper)
-
- public:
- CSyncKeeper() { }
-
- /**
- * @param aSyncObj Pointer to the sync object which should be used for
- * sync'ing, can be NULL.
- */
-
- CSyncKeeper(CSyncObject* const aSyncObj) : SyncObj(aSyncObj) { if (SyncObj != nullptr) { SyncObj->acquire(); } }
-
- /**
- * @param aSyncObj Reference to the sync object which should be used for
- * sync'ing.
- */
-
- CSyncKeeper(CSyncObject& aSyncObj) : SyncObj(&aSyncObj) { SyncObj->acquire(); }
-
- ~CSyncKeeper() { if (SyncObj != nullptr) { SyncObj->release(); } }
-
- protected:
- CSyncObject* SyncObj = nullptr; ///< Sync object in use (can be NULL).
- ///<
- };
-
- /**
- * The synchronization macro. The R8BSYNC( obj ) macro, which creates and
- * object of the r8b::CSyncKeeper class on stack, should be put before
- * sections of the code that may potentially change data asynchronously with
- * other threads at the same time. The R8BSYNC( obj ) macro "acquires" the
- * synchronization object thus blocking execution of other threads that also
- * use the same R8BSYNC( obj ) macro. The blocked section begins with the
- * R8BSYNC( obj ) macro and finishes at the end of the current C++ code block.
- * Multiple R8BSYNC() macros may be defined from within the same code block.
- *
- * @param SyncObject An object of the CSyncObject type that is used for
- * synchronization.
- */
-
- #define R8BSYNC( SyncObject ) R8BSYNC_( SyncObject, __LINE__ )
- #define R8BSYNC_( SyncObject, id ) R8BSYNC__( SyncObject, id )
- #define R8BSYNC__( SyncObject, id ) CSyncKeeper SyncKeeper##id( SyncObject )
-
- /**
- * @brief Sine signal generator class.
- *
- * Class implements sine signal generator without biasing.
- */
-
- class CSineGen
- {
- public:
- CSineGen() { }
-
- /**
- * Constructor initializes *this sine signal generator.
- *
- * @param si Sine function increment, in radians.
- * @param ph Starting phase, in radians. Add 0.5 * M_PI for cosine
- * function.
- */
-
- CSineGen(const double si, const double ph) : svalue1(sin(ph)), svalue2(sin(ph - si)), sincr(2.0 * cos(si)) { }
-
- /**
- * Constructor initializes *this sine signal generator.
- *
- * @param si Sine function increment, in radians.
- * @param ph Starting phase, in radians. Add 0.5 * M_PI for cosine
- * function.
- * @param g The overall gain factor, 1.0 for unity gain (-1.0 to 1.0
- * amplitude).
- */
-
- CSineGen(const double si, const double ph, const double g) : svalue1(sin(ph) * g), svalue2(sin(ph - si) * g), sincr(2.0 * cos(si)) { }
-
- /**
- * Function initializes *this sine signal generator.
- *
- * @param si Sine function increment, in radians.
- * @param ph Starting phase, in radians. Add 0.5 * M_PI for cosine
- * function.
- */
-
- void init(const double si, const double ph)
- {
- svalue1 = sin(ph);
- svalue2 = sin(ph - si);
- sincr = 2.0 * cos(si);
- }
-
- /**
- * Function initializes *this sine signal generator.
- *
- * @param si Sine function increment, in radians.
- * @param ph Starting phase, in radians. Add 0.5 * M_PI for cosine
- * function.
- * @param g The overall gain factor, 1.0 for unity gain (-1.0 to 1.0
- * amplitude).
- */
-
- void init(const double si, const double ph, const double g)
- {
- svalue1 = sin(ph) * g;
- svalue2 = sin(ph - si) * g;
- sincr = 2.0 * cos(si);
- }
-
- /**
- * @return Next value of the sine function, without biasing.
- */
-
- double generate()
- {
- const double res = svalue1;
-
- svalue1 = sincr * res - svalue2;
- svalue2 = res;
-
- return (res);
- }
-
- private:
- double svalue1 = 0; ///< Current sine value.
- ///<
- double svalue2 = 0; ///< Previous sine value.
- ///<
- double sincr = 0; ///< Sine value increment.
- ///<
- };
-
- /**
- * @param v Input value.
- * @return Calculated bit occupancy of the specified input value. Bit
- * occupancy means how many significant lower bits are necessary to store a
- * specified value. Function treats the input value as unsigned.
- */
-
- inline int getBitOccupancy(const int v)
- {
- static const char OccupancyTable[] =
- {
- 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
- };
-
- const int tt = v >> 16;
-
- if (tt != 0)
- {
- const int t = v >> 24;
- return (t != 0 ? 24 + OccupancyTable[t & 0xFF] : 16 + OccupancyTable[tt]);
- }
- const int t = v >> 8;
- return (t != 0 ? 8 + OccupancyTable[t] : OccupancyTable[v]);
- }
-
- /**
- * Function calculates frequency response of the specified FIR filter at the
- * specified circular frequency. Phase can be calculated as atan2( im, re ).
- *
- * @param flt FIR filter's coefficients.
- * @param fltlen Number of coefficients (taps) in the filter.
- * @param th Circular frequency [0; pi].
- * @param[out] re0 Resulting real part of the complex frequency response.
- * @param[out] im0 Resulting imaginary part of the complex frequency response.
- * @param fltlat Filter's latency in samples.
- */
-
- inline void calcFIRFilterResponse(const double* flt, int fltlen, const double th, double& re0, double& im0, const int fltlat = 0)
- {
- const double sincr = 2.0 * cos(th);
- double cvalue1;
- double svalue1;
-
- if (fltlat == 0)
- {
- cvalue1 = 1.0;
- svalue1 = 0.0;
- }
- else
- {
- cvalue1 = cos(-fltlat * th);
- svalue1 = sin(-fltlat * th);
- }
-
- double cvalue2 = cos(-(fltlat + 1) * th);
- double svalue2 = sin(-(fltlat + 1) * th);
-
- double re = 0.0;
- double im = 0.0;
-
- while (fltlen > 0)
- {
- re += cvalue1 * flt[0];
- im += svalue1 * flt[0];
- flt++;
- fltlen--;
-
- double tmp = cvalue1;
- cvalue1 = sincr * cvalue1 - cvalue2;
- cvalue2 = tmp;
-
- tmp = svalue1;
- svalue1 = sincr * svalue1 - svalue2;
- svalue2 = tmp;
- }
-
- re0 = re;
- im0 = im;
- }
-
- /**
- * Function calculates frequency response and group delay of the specified FIR
- * filter at the specified circular frequency. The group delay is calculated
- * by evaluating the filter's response at close side-band frequencies of "th".
- *
- * @param flt FIR filter's coefficients.
- * @param fltlen Number of coefficients (taps) in the filter.
- * @param th Circular frequency [0; pi].
- * @param[out] re Resulting real part of the complex frequency response.
- * @param[out] im Resulting imaginary part of the complex frequency response.
- * @param[out] gd Resulting group delay at the specified frequency, in
- * samples.
- */
-
- inline void calcFIRFilterResponseAndGroupDelay(const double* const flt, const int fltlen, const double th, double& re, double& im, double& gd)
- {
- // Calculate response at "th".
-
- calcFIRFilterResponse(flt, fltlen, th, re, im);
-
- // Calculate response at close sideband frequencies.
-
- const int Count = 2;
- const double thd2 = 1e-9;
- double ths[ Count ] = { th - thd2, th + thd2 };
-
- if (ths[0] < 0.0) { ths[0] = 0.0; }
- if (ths[1] > M_PI) { ths[1] = M_PI; }
-
- double ph1[ Count ];
-
- for (int i = 0; i < Count; ++i)
- {
- double re1;
- double im1;
-
- calcFIRFilterResponse(flt, fltlen, ths[i], re1, im1);
- ph1[i] = atan2(im1, re1);
- }
-
- if (fabs(ph1[1] - ph1[0]) > M_PI)
- {
- if (ph1[1] > ph1[0]) { ph1[1] -= M_2PI; }
- else { ph1[1] += M_2PI; }
- }
-
- const double thd = ths[1] - ths[0];
- gd = (ph1[1] - ph1[0]) / -thd;
- }
-
- /**
- * Function normalizes FIR filter so that its frequency response at DC is
- * equal to DCGain.
- *
- * @param[in,out] p Filter coefficients.
- * @param l Filter length.
- * @param DCGain Filter's gain at DC (linear, non-decibel value).
- * @param pstep "p" array step.
- */
- inline void normalizeFIRFilter(double* const p, const int l, const double DCGain, const int pstep = 1)
- {
- R8BASSERT(l > 0);
- R8BASSERT(pstep != 0);
-
- double s = 0.0;
- double* pp = p;
- int i = l;
-
- while (i > 0)
- {
- s += *pp;
- pp += pstep;
- i--;
- }
-
- s = DCGain / s;
- pp = p;
- i = l;
-
- while (i > 0)
- {
- *pp *= s;
- pp += pstep;
- i--;
- }
- }
-
- /**
- * Function calculates coefficients used to calculate 3rd order spline
- * (polynomial) on the equidistant lattice, using 8 points.
- *
- * @param[out] c Output coefficients buffer, length = 4.
- * @param xm3 Point at x-3 position.
- * @param xm2 Point at x-2 position.
- * @param xm1 Point at x-1 position.
- * @param x0 Point at x position.
- * @param x1 Point at x+1 position.
- * @param x2 Point at x+2 position.
- * @param x3 Point at x+3 position.
- * @param x4 Point at x+4 position.
- */
- inline void calcSpline3p8Coeffs(double* c, const double xm3, const double xm2, const double xm1, const double x0, const double x1, const double x2,
- const double x3, const double x4)
- {
- c[0] = x0;
- c[1] = (61.0 * (x1 - xm1) + 16.0 * (xm2 - x2) + 3.0 * (x3 - xm3)) / 76.0;
-
- c[2] = (106.0 * (xm1 + x1) + 10.0 * x3 + 6.0 * xm3 - 3.0 * x4 - 29.0 * (xm2 + x2) - 167.0 * x0) / 76.0;
-
- c[3] = (91.0 * (x0 - x1) + 45.0 * (x2 - xm1) + 13.0 * (xm2 - x3) + 3.0 * (x4 - xm3)) / 76.0;
- }
-
- /**
- * Function calculates coefficients used to calculate 2rd order spline
- * (polynomial) on the equidistant lattice, using 8 points. This function is
- * based on the calcSpline3Coeffs8() function, but without the 3rd order
- * coefficient.
- *
- * @param[out] c Output coefficients buffer, length = 3.
- * @param xm3 Point at x-3 position.
- * @param xm2 Point at x-2 position.
- * @param xm1 Point at x-1 position.
- * @param x0 Point at x position.
- * @param x1 Point at x+1 position.
- * @param x2 Point at x+2 position.
- * @param x3 Point at x+3 position.
- * @param x4 Point at x+4 position.
- */
-
- inline void calcSpline2p8Coeffs(double* c, const double xm3, const double xm2, const double xm1, const double x0, const double x1, const double x2,
- const double x3, const double x4)
- {
- c[0] = x0;
- c[1] = (61.0 * (x1 - xm1) + 16.0 * (xm2 - x2) + 3.0 * (x3 - xm3)) / 76.0;
- c[2] = (106.0 * (xm1 + x1) + 10.0 * x3 + 6.0 * xm3 - 3.0 * x4 - 29.0 * (xm2 + x2) - 167.0 * x0) / 76.0;
- }
-
- /**
- * Function calculates coefficients used to calculate 3rd order segment
- * interpolation polynomial on the equidistant lattice, using 4 points.
- *
- * @param[out] c Output coefficients buffer, length = 4.
- * @param[in] y Equidistant point values. Value at offset 1 corresponds to
- * x=0 point.
- */
-
- inline void calcInterpCoeffs3p4(double* const c, const double* const y)
- {
- c[0] = y[1];
- c[1] = 0.5 * (y[2] - y[0]);
- c[2] = y[0] - 2.5 * y[1] + y[2] + y[2] - 0.5 * y[3];
- c[3] = 0.5 * (y[3] - y[0]) + 1.5 * (y[1] - y[2]);
- }
-
- /**
- * Function calculates coefficients used to calculate 3rd order segment
- * interpolation polynomial on the equidistant lattice, using 6 points.
- *
- * @param[out] c Output coefficients buffer, length = 4.
- * @param[in] y Equidistant point values. Value at offset 2 corresponds to
- * x=0 point.
- */
-
- inline void calcInterpCoeffs3p6(double* const c, const double* const y)
- {
- c[0] = y[2];
- c[1] = (11.0 * (y[3] - y[1]) + 2.0 * (y[0] - y[4])) / 14.0;
- c[2] = (20.0 * (y[1] + y[3]) + 2.0 * y[5] - 4.0 * y[0] - 7.0 * y[4] - 31.0 * y[2]) / 14.0;
- c[3] = (17.0 * (y[2] - y[3]) + 9.0 * (y[4] - y[1]) + 2.0 * (y[0] - y[5])) / 14.0;
- }
-
- /**
- * Function calculates coefficients used to calculate 3rd order segment
- * interpolation polynomial on the equidistant lattice, using 8 points.
- *
- * @param[out] c Output coefficients buffer, length = 4.
- * @param[in] y Equidistant point values. Value at offset 3 corresponds to
- * x=0 point.
- */
-
- inline void calcInterpCoeffs3p8(double* const c, const double* const y)
- {
- c[0] = y[3];
- c[1] = (61.0 * (y[4] - y[2]) + 16.0 * (y[1] - y[5]) + 3.0 * (y[6] - y[0])) / 76.0;
- c[2] = (106.0 * (y[2] + y[4]) + 10.0 * y[6] + 6.0 * y[0] - 3.0 * y[7] - 29.0 * (y[1] + y[5]) - 167.0 * y[3]) / 76.0;
- c[3] = (91.0 * (y[3] - y[4]) + 45.0 * (y[5] - y[2]) + 13.0 * (y[1] - y[6]) + 3.0 * (y[7] - y[0])) / 76.0;
- }
-
- /**
- * Function calculates coefficients used to calculate 3rd order segment
- * interpolation polynomial on the equidistant lattice, using 8 points.
- *
- * @param[out] c Output coefficients buffer, length = 3.
- * @param[in] y Equidistant point values. Value at offset 3 corresponds to
- * x=0 point.
- */
-
- inline void calcInterpCoeffs2p8(double* const c, const double* const y)
- {
- c[0] = y[3];
- c[1] = (61.0 * (y[4] - y[2]) + 16.0 * (y[1] - y[5]) + 3.0 * (y[6] - y[0])) / 76.0;
-
- c[2] = (106.0 * (y[2] + y[4]) + 10.0 * y[6] + 6.0 * y[0] - 3.0 * y[7] - 29.0 * (y[1] + y[5]) - 167.0 * y[3]) / 76.0;
- }
-
- #if !defined( min )
-
- /**
- * @param v1 Value 1.
- * @param v2 Value 2.
- * @return The minimum of 2 values.
- */
- template <class T>
- T min(const T& v1, const T& v2) { return (v1 < v2 ? v1 : v2); }
-
- #endif // min
-
- #if !defined( max )
-
- /**
- * @param v1 Value 1.
- * @param v2 Value 2.
- * @return The maximum of 2 values.
- */
- template <class T>
- T max(const T& v1, const T& v2) { return (v1 > v2 ? v1 : v2); }
-
- #endif // max
-
- /**
- * Function "clamps" (clips) the specified value so that it is not lesser than
- * "minv", and not greater than "maxv".
- *
- * @param Value Value to clamp.
- * @param minv Minimal allowed value.
- * @param maxv Maximal allowed value.
- * @return "Clamped" value.
- */
- inline double clampr(const double Value, const double minv, const double maxv)
- {
- if (Value < minv) { return (minv); }
- if (Value > maxv) { return (maxv); }
- return (Value);
- }
-
- /**
- * @param x Value to square.
- * @return Squared value of the argument.
- */
- inline double sqr(const double x) { return (x * x); }
-
- /**
- * @param v Input value.
- * @param p Power factor.
- * @return Returns pow() function's value with input value's sign check.
- */
- inline double pows(const double v, const double p) { return (v < 0.0 ? -pow(-v, p) : pow(v, p)); }
-
- /**
- * @param v Input value.
- * @return Calculated single-argument Gaussian function of the input value.
- */
- inline double gauss(const double v) { return (exp(-(v * v))); }
-
- /**
- * @param v Input value.
- * @return Calculated inverse hyperbolic sine of the input value.
- */
- inline double asinh(const double v) { return (log(v + sqrt(v * v + 1.0))); }
-
- /**
- * @param x Input value.
- * @return Calculated zero-th order modified Bessel function of the first kind
- * of the input value. Approximate value.
- */
- inline double besselI0(const double x)
- {
- const double ax = fabs(x);
- double y;
-
- if (ax < 3.75)
- {
- y = x / 3.75;
- y *= y;
-
- return (1.0 + y * (3.5156229 + y * (3.0899424 + y * (1.2067492 + y * (0.2659732 + y * (0.360768e-1 + y * 0.45813e-2))))));
- }
-
- y = 3.75 / ax;
-
- return (exp(ax) / sqrt(ax) * (0.39894228 + y * (0.1328592e-1 + y * (
- 0.225319e-2 + y * (
- -0.157565e-2 + y * (
- 0.916281e-2 + y * (
- -0.2057706e-1 + y * (0.2635537e-1 + y * (-0.1647633e-1 + y * 0.392377e-2)))))))));
- }
- } // namespace r8b
|