library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; architecture rtl of add is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal fa_start: std_logic; signal fa_done: std_logic; signal fa_sum: std_logic_vector(31 downto 0); signal a_value: std_logic_vector(31 downto 0); signal b_value: std_logic_vector(31 downto 0); signal sample_done: std_logic; signal calc_cnt_int: integer range 0 to 15; type calc_state_t is ( C_IDLE, C_READ_A_REQ, C_READ_A_LATCH, C_READ_B_REQ, C_READ_B_LATCH, C_START_ADD, C_WAIT_ADD, C_WRITE_RESULT ); signal calc_state: calc_state_t:=C_IDLE; begin u_float_add : entity work.float_add port map( clk => clk, reset => reset, start => fa_start, done => fa_done, A => a_value, B => b_value, sum => fa_sum ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; calc_state <= C_IDLE; signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; signal_writedata <= (others => '0'); calc_cnt_int <= 0; fa_start <= '0'; a_value <= (others => '0'); b_value <= (others => '0'); sample_done <= '0'; index <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; fa_start <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; sample_done <= '0'; case next_task_state is when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; when work.task.TASK_RUNNING => index <= index + 1; signal_write <= '1'; signal_writedata <= ( others => '0' ); when work.task.TASK_DONE => index <= 0; signal_write <= '0'; end case; case calc_state is when C_IDLE => if current_task_state = work.task.TASK_RUNNING then calc_state <= C_READ_A_REQ; end if; when C_READ_A_REQ => signal_a_read <= '1'; calc_state <= C_READ_A_LATCH; when C_READ_A_LATCH => a_value <= signal_a_readdata; calc_state <= C_READ_B_REQ; when C_READ_B_REQ => signal_b_read <= '1'; calc_state <= C_READ_B_LATCH; when C_READ_B_LATCH => b_value <= signal_b_readdata; calc_state <= C_START_ADD; when C_START_ADD => fa_start <='1'; calc_state <= C_WAIT_ADD; when C_WAIT_ADD => if ( fa_done = '1' ) then calc_state <= C_WRITE_RESULT; end if; when C_WRITE_RESULT => signal_write <= '1' ; signal_writedata <= fa_sum; calc_cnt_int <= calc_cnt_int + 1; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;