generated from freudenreichan/info2Praktikum-NeuronalesNetz
97 lines
3.1 KiB
C
97 lines
3.1 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "matrix.h"
|
|
|
|
// Matrix erstellen
|
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
|
{
|
|
Matrix matrix = {NULL, 0, 0};
|
|
if (rows == 0 || cols == 0) {
|
|
return matrix; // Keine Speicherallokation
|
|
}
|
|
matrix.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
|
|
matrix.rows = rows;
|
|
matrix.cols = cols;
|
|
return matrix;
|
|
}
|
|
|
|
// Speicher freigeben
|
|
void clearMatrix(Matrix *matrix)
|
|
{
|
|
if (matrix->buffer != NULL) {
|
|
free(matrix->buffer);
|
|
matrix->buffer = NULL;
|
|
}
|
|
matrix->rows = 0;
|
|
matrix->cols = 0;
|
|
}
|
|
|
|
// Wert setzen
|
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) {
|
|
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
|
|
}
|
|
}
|
|
|
|
// Wert auslesen
|
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) {
|
|
return matrix.buffer[rowIdx * matrix.cols + colIdx];
|
|
}
|
|
return UNDEFINED_MATRIX_VALUE; // Fehlerbehandlung
|
|
}
|
|
|
|
// Matrizen addieren (mit Broadcasting)
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
if (matrix1.buffer == NULL || matrix2.buffer == NULL) {
|
|
return (Matrix){NULL, 0, 0};
|
|
}
|
|
|
|
// Prüfen auf Broadcasting-Kompatibilität
|
|
if (!((matrix1.rows == matrix2.rows) || (matrix1.rows == 1) || (matrix2.rows == 1))) {
|
|
return (Matrix){NULL, 0, 0};
|
|
}
|
|
if (!((matrix1.cols == matrix2.cols) || (matrix1.cols == 1) || (matrix2.cols == 1))) {
|
|
return (Matrix){NULL, 0, 0};
|
|
}
|
|
|
|
unsigned int resultRows = (matrix1.rows > matrix2.rows) ? matrix1.rows : matrix2.rows;
|
|
unsigned int resultCols = (matrix1.cols > matrix2.cols) ? matrix1.cols : matrix2.cols;
|
|
|
|
Matrix result = createMatrix(resultRows, resultCols);
|
|
|
|
for (unsigned int i = 0; i < resultRows; i++) {
|
|
for (unsigned int j = 0; j < resultCols; j++) {
|
|
MatrixType val1 = matrix1.buffer[(matrix1.rows == 1 ? 0 : i) * matrix1.cols +
|
|
(matrix1.cols == 1 ? 0 : j)];
|
|
MatrixType val2 = matrix2.buffer[(matrix2.rows == 1 ? 0 : i) * matrix2.cols +
|
|
(matrix2.cols == 1 ? 0 : j)];
|
|
result.buffer[i * resultCols + j] = val1 + val2;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Matrizen multiplizieren
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
if (matrix1.cols != matrix2.rows || matrix1.buffer == NULL || matrix2.buffer == NULL) {
|
|
return (Matrix){NULL, 0, 0};
|
|
}
|
|
|
|
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
|
|
for (unsigned int i = 0; i < matrix1.rows; i++) {
|
|
for (unsigned int j = 0; j < matrix2.cols; j++) {
|
|
MatrixType sum = 0;
|
|
for (unsigned int k = 0; k < matrix1.cols; k++) {
|
|
sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j];
|
|
}
|
|
result.buffer[i * result.cols + j] = sum;
|
|
}
|
|
}
|
|
return result;
|
|
} |