Compare commits

..

3 Commits

Author SHA1 Message Date
PapiBigSzill
9dd561aece ARCH: Design-Dokumentation final 2025-11-16 21:02:48 +01:00
PapiBigSzill
861bd8e8a3 Added Namespace, Classes, Template 2025-11-03 13:03:56 +01:00
PapiBigSzill
298f046dde Add design.txt for architectural design 2025-11-03 12:19:50 +01:00
17 changed files with 243 additions and 695 deletions

BIN
.DS_Store vendored

Binary file not shown.

1
.gitignore vendored
View File

@ -1 +0,0 @@
.idea/

8
.idea/.gitignore generated vendored
View File

@ -1,8 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

4
.idea/vcs.xml generated
View File

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings" defaultProject="true" />
</project>

View File

@ -8,51 +8,28 @@ set(CMAKE_CXX_STANDARD 20)
# Set the default build type if not specified
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
endif()
set(SRC_FILES
src/main.cpp
src/gamecube.cpp
src/gamematrix.cpp
${CMAKE_CURRENT_LIST_DIR}/main.cpp
${CMAKE_CURRENT_LIST_DIR}/gamecube.cpp
)
set(INCLUDE_DIRS
${CMAKE_CURRENT_LIST_DIR}/includes
${CMAKE_CURRENT_LIST_DIR}/linux
)
add_executable(${EXECUTABLE_NAME} ${SRC_FILES})
#target_include_directories(${EXECUTABLE_NAME} PRIVATE ${INCLUDE_DIRS})
target_include_directories(Prog3B PRIVATE
${CMAKE_CURRENT_LIST_DIR}/includes
${CMAKE_CURRENT_LIST_DIR}/raylib
)
target_include_directories(${EXECUTABLE_NAME} PRIVATE ${INCLUDE_DIRS})
target_link_libraries(${EXECUTABLE_NAME} PRIVATE
#${CMAKE_CURRENT_LIST_DIR}/windows/libgamematrix.a
${CMAKE_CURRENT_LIST_DIR}/mac_arm/libraylib.a
${CMAKE_CURRENT_LIST_DIR}/linux/libgamematrix.a
${CMAKE_CURRENT_LIST_DIR}/linux/libraylib.a
)
# Checks if OSX and links appropriate frameworks (Only required on MacOS)
if (APPLE)
target_link_libraries(Prog3B PRIVATE "-framework IOKit"
"-framework Cocoa"
"-framework OpenGL"
)
target_link_libraries(Prog3B "-framework IOKit")
target_link_libraries(Prog3B "-framework Cocoa")
target_link_libraries(Prog3B "-framework OpenGL")
endif()
add_executable(tests
${CMAKE_CURRENT_LIST_DIR}/src/tests.cpp
${CMAKE_CURRENT_LIST_DIR}/src/gamematrix.cpp
)
target_include_directories(tests PRIVATE ${INCLUDE_DIRS})
target_link_libraries(tests PRIVATE)
#if (APPLE)
#target_link_libraries(Prog3B PRIVATE "-framework IOKit")
#target_link_libraries(Prog3B PRIVATE "-framework Cocoa")
#target_link_libraries(Prog3B PRIVATE "-framework OpenGL")
#endif()

@ -1 +0,0 @@
Subproject commit 21700018752d7b19e3c2642707b1c1b06e2f3d84

75
design.txt Normal file
View File

@ -0,0 +1,75 @@
Eine Mücke
========================================================
Projekt: gamematrix (C++ Library)
Rolle: Architekt
Datei: design.txt
Datum: 16.11.25
Team:bhattial100541
========================================================
# ----------------------------
# 1. Projektstruktur / Namespace
# ----------------------------
Namespace: Matrix3D
Ziel: Saubere Trennung der Bibliothek, Vermeidung von Namenskonflikten.
Beispiel:
namespace Matrix3D {
// Funktionen, ggf Klasse(n)
}
# ----------------------------
# 2. Datenstrukturen / Klassen
# ----------------------------
Listen Sie die Klassen oder Structs auf, die verwendet werden:
Name Typ Beschreibung
Vec3 struct Vec3 (z.B. std::array<double, 3>) 3D-Vektor (x, y, z)
Mat4 std::array<std::array<double,4>,4> 4x4-Matrix (homogen)
Vec4 struct Vec4 (z.B. std::array<double, 4>) 4D-Vektor (Homogene Koordinaten)
gameMatrix class gameMatrix (Container für statische Methoden) Statische Klasse zur Erzeugung von Transformationsmatrizen
# ----------------------------
# 3. Operatoren / Templates
# ----------------------------
Welche Operatoren oder Templates sollen definiert werden?
- Templates für unterschiedliche Datentypen? ☐ Nein
- Operatoren:
- Mat4 * Mat4(Matrix-Matrix-Multiplikation)
- Mat4 * Vec3(Matrix-Vektor-Multiplikation unter Nutzung homogener Koordinaten)
# ----------------------------
# 4. Funktionen / Schnittstellen
# ----------------------------
Liste der Funktionen mit Eingabe/Ausgabe und kurzer Beschreibung:
Funktion Eingabe Ausgabe Kurzbeschreibung
matmul const Mat4& A, const Mat4& B Mat4 Matrixmultiplikation 4x4
translate const Vec3& pos Mat4 Erzeugt eine Verschiebungstransformationsmatrix
rot3D double angle_deg, char axis ('x', 'y', 'z') Mat4 Erzeugt eine Rotationsmatrix um Achse x/y/z
identity --- Mat4 Erzeugt die 4x4-Identitätsmatrix
operator* const Mat4& m, const Vec3& v Vec3 Multipliziert Matrizen mit 3D-Vektoren (Homogen-Adapter)
# ----------------------------
# 5. Designentscheidungen / Hinweise
# ----------------------------
- Rückgabe der Matrizen per Wert oder Referenz? Wert(Transformationsmatrizen, da diese neu erzeugt werden und Copy Elision durch moderne Compiler optimiert werden kann)
- Verwendung von std::array oder std::vector? std::array(bessere Performance und speichereffizienter als std::vector)
- Homogene Koordinaten für Translation / Rotation (4x4)? ☐ Ja
- Weitere Designüberlegungen: Klasse gameMatrix dient als Utility Class, sollte keine eigene zustände besitzen, daher Funktionen sind static implementiert, folgt den OCP principle
# ----------------------------
# 6. Deliverables / Milestones
# ----------------------------
- design.txt fertig und im Branch architect committed
- Übergabe an Entwickler für Implementierung
========================================================
Hinweis:
- Dieses Dokument dient als Grundlage für die Implementierung.
- Alle Designentscheidungen sollen klar nachvollziehbar sein.
========================================================

View File

@ -1,20 +0,0 @@
Projekt: .wuerfelmemory
Datum: 03.11.2025
Team(Rollen):Projektleiter: Alina.B
Architekt: Alex.S
Entwickler: Tomila.B
Tester: Elisa.S
1.Projektziel:
| Funktion | Eingabe | Ausgabe | Kurzbeschreibung |
|---------------|------------------------------------|-----------------------|----------------------------------------|
| matmul | 4x4 Matrix A, 4x4 Matrix B | 4x4 Matrix | |
| translate | 3D Vektor | 4x4 Matrix | |
| rot3D | Winkel in °, Rotationsachse (x/y/z)| 4x4 Matrix | |
Dokumentation:

View File

@ -39,11 +39,11 @@ void gamecube::Draw() const
rlPushMatrix();
// Matrizen für Rotation und Translation erzeugen
auto matrix_a = Matrix3D::gameMatrix::translate({ position.x, position.y, position.z});
auto matrix_b = Matrix3D::gameMatrix::rot3D(rotation, 'y');
auto matrix_a = gameMatrix::translate({ position.x, position.y, position.z});
auto matrix_b = gameMatrix::rot3D(rotation, 'y');
// Matrizen multiplizieren (Translation * Rotation)
auto model = Matrix3D::gameMatrix::matmul(matrix_a, matrix_b);
auto model = gameMatrix::matmul(matrix_a, matrix_b);
// transform for raylib matrix
float f[16];

19
gamematrix.h Normal file
View File

@ -0,0 +1,19 @@
#pragma once
#include <vector>
#include <array>
#include <stdexcept>
#include <cmath>
class gameMatrix
{
public:
// Matrix Multiplikation
static std::array<std::array<double,4>,4> matmul(const std::array<std::array<double,4>,4>& A,
const std::array<std::array<double,4>,4>& B);
// Rotationsmatrix um Achse x/y/z
static std::array<std::array<double,4>,4> rot3D(double angle_deg, char axis);
// Verschiebung
static std::array<std::array<double,4>,4> translate(const std::array<double, 3>& pos);
};

View File

@ -1,23 +0,0 @@
#pragma once
#include <vector>
#include <array>
#include <stdexcept>
#include <cmath>
namespace Matrix3D
{
using Vec3 = std::array<double, 3>;
using Vec4 = std::array<double, 4>;
using Mat4 = std::array<std::array<double, 4>, 4>;
class gameMatrix
{
public:
static Mat4 identity();
static Mat4 matmul(const Mat4& A, const Mat4& B);
static Mat4 translate(const Vec3& pos);
static Mat4 rot3D(double angle_deg, char axis);
};
Mat4 operator*(const Mat4& A, const Mat4& B);
Vec3 operator*(const Mat4& m, const Vec3& v);
}

136
main.cpp Normal file
View File

@ -0,0 +1,136 @@
#include "gamecube.h"
#include <algorithm>
#include <ctime>
// -----------------------------------------------------------
// 3D Memory Game Hauptprogramm
// -----------------------------------------------------------
int main()
{
// Zufall initialisieren
srand(time(NULL));
// Fenster und Kamera
InitWindow(800, 600, "3D Memory Game with Matrix3D Library");
SetTargetFPS(60);
Camera3D camera{};
camera.position = {6.0f, 6.0f, 6.0f};
camera.target = {0.0f, 0.0f, 0.0f};
camera.up = {0.0f, 1.0f, 0.0f};
camera.fovy = 45.0f;
camera.projection = CAMERA_PERSPECTIVE;
// Nur 3 Farben für 3 Paare
Color colors[] = { RED, GREEN, BLUE };
// 6 Karten-Positionen im 3x2 Raster
std::vector<Vec3> positions = {{-2, 0, -2}, {0, 0, -2}, {2, 0, -2},{-2, 0, 0}, {0, 0, 0}, {2, 0, 0}};
// Farben doppelt in einen Pool legen und mischen
std::vector<Color> colorPool;
for (int i = 0; i < 3; i++)
{
colorPool.push_back(colors[i]);
colorPool.push_back(colors[i]);
}
// Fisher-Yates Shuffle mit rand()
for (int i = colorPool.size() - 1; i > 0; --i)
{
int j = rand() % (i + 1); // Zufallsindex von 0 bis i
std::swap(colorPool[i], colorPool[j]);
}
// Karten/Würfel erstellen
std::vector<gamecube> cubes;
for (int i = 0; i < 6; i++)
cubes.emplace_back(positions[i], colorPool[i]);
gamecube* first = nullptr;
gamecube* second = nullptr;
float flipSpeed = 5.0f; // Drehgeschwindigkeit
bool gameWon = false;
// -----------------------------------------------------------
// Hauptspielschleife
// -----------------------------------------------------------
while (!WindowShouldClose())
{
// Klick-Erkennung
if (!gameWon && IsMouseButtonPressed(MOUSE_LEFT_BUTTON))
{
Vector2 mouse = GetMousePosition();
for (auto &c : cubes)
{
if (!c.IsFlipped() && !c.IsMatched())
{
Vector2 screenPos = GetWorldToScreen({c.GetPosition().x, c.GetPosition().y, c.GetPosition().z}, camera);
if (fabs(mouse.x - screenPos.x) < 40 && fabs(mouse.y - screenPos.y) < 40)
c.FlipForward();
}
}
}
// Animation aller Würfel
for (auto &c : cubes)
{
c.Update(flipSpeed);
// Sobald ein Würfel vollständig umgedreht ist → merken
if (c.IsFlipped() && !c.IsMatched())
{
if (!first) first = &c;
else if (!second && &c != first) second = &c;
}
}
// Matching-Logik
if (first && second)
{
Color col1 = first->GetColor();
Color col2 = second->GetColor();
if (col1.r == col2.r && col1.g == col2.g && col1.b == col2.b)
{
first->SetMatched(true);
second->SetMatched(true);
}
else
{
first->FlipBackward();
second->FlipBackward();
}
first = second = nullptr;
}
// Gewinnprüfung
if (!gameWon)
gameWon = std::all_of(cubes.begin(), cubes.end(), [](const gamecube &c){ return c.IsMatched(); });
// -----------------------------------------------------------
// Zeichnen
// -----------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
BeginMode3D(camera);
for (auto &c : cubes)
c.Draw();
EndMode3D();
if (gameWon)
DrawText("Congrats! You found all pairs!", 150, 260, 30, DARKBLUE);
else
DrawText("Flip 2 cubes - find matching pairs!", 10, 10, 20, DARKGRAY);
EndDrawing();
}
CloseWindow();
return 0;
}

View File

@ -1,97 +0,0 @@
//
// Created by bakee on 03.11.2025.
//
#include "gamematrix.h"
#include <cmath>
namespace Matrix3D
{
Mat4 gameMatrix::identity()
{
return {{
{1.0, 0.0, 0.0, 0.0},
{0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 1.0, 0.0},
{0.0, 0.0, 0.0, 1.0}
}};
}
Mat4 gameMatrix::matmul(const Mat4& A, const Mat4& B)
{
const int N = 4;
Mat4 result = {};
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
for (int k = 0; k < N; ++k)
{
result[i][j] += A[i][k] * B[k][j];
}
}
}
return result;
}
Mat4 gameMatrix::translate(const Vec3& pos)
{
Mat4 result = identity();
result[0][3] = pos[0]; // x
result[1][3] = pos[1]; // y
result[2][3] = pos[2]; // z
return result;
}
Mat4 gameMatrix::rot3D(double angle_deg, char axis)
{
const double angle_rad = angle_deg * M_PI / 180.0;
Mat4 result = identity();
const double c = std::cos(angle_rad);
const double s = std::sin(angle_rad);
switch (axis)
{
case 'x':
result[1][1] = c; result[1][2] = -s;
result[2][1] = s; result[2][2] = c;
break;
case 'y':
result[0][0] = c; result[0][2] = s;
result[2][0] = -s; result[2][2] = c;
break;
case 'z':
result[0][0] = c; result[0][1] = -s;
result[1][0] = s; result[1][1] = c;
break;
default:
break;
}
return result;
}
Mat4 operator*(const Mat4& A, const Mat4& B)
{
return gameMatrix::matmul(A, B);
}
Vec3 operator*(const Mat4& m, const Vec3& v)
{
Vec4 v_hom = {v[0], v[1], v[2], 1.0};
Vec4 res_hom = {};
for (int i = 0; i < 4; ++i)
{
for (int j = 0; j < 4; ++j)
{
res_hom[i] += m[i][j] * v_hom[j];
}
}
return {res_hom[0], res_hom[1], res_hom[2]};
}
}

View File

@ -1,370 +0,0 @@
#include "gamecube.h"
#include <algorithm>
#include <ctime>
#include <vector>
#include "raylib.h" // Stellen Sie sicher, dass raylib.h hier oder in gamecube.h inkludiert ist
// -----------------------------------------------------------
// 3D Memory Game Hauptprogramm
// -----------------------------------------------------------
enum GameScreen {MENU = 0, GAMEPLAY};
void SetupGame(std::vector<gamecube>& cubes, int pairs)
{
cubes.clear();
Color colors[] = {RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE, WHITE, SKYBLUE};
std::vector<Vec3> positions;
int count = pairs * 2;
int cols = 3;
int rows = 2;
if (count > 6) {
cols = 4;
rows = 3;
}
int index = 0;
// Generiert Positionen basierend auf der Größe
for (int r = 0; r < rows && index < count; ++r) {
for (int c = 0; c < cols && index < count; ++c) {
// Zentriert die Würfel um (0,0,0)
positions.push_back({(float)c * 2.0f - (cols -1 ), 0.0f, (float)r * 2.0f - (rows -1)});
index++;
}
}
std::vector<Color> colorPool;
for (int i = 0; i < pairs; i++) {
colorPool.push_back(colors[i]);
colorPool.push_back(colors[i]);
}
// Fisher-Yates Shuffle
for (int i= colorPool.size() -1; i > 0; --i) {
int j = rand() % (i + 1);
std::swap(colorPool[i], colorPool[j]);
}
// Würfel erstellen
for (int i = 0; i < count; i++)
cubes.emplace_back(positions[i], colorPool[i]);
}
int main()
{
// Zufall initialisieren#include "gamecube.h"
//#include <algorithm>
//#include <ctime>
//
//// -----------------------------------------------------------
//// 3D Memory Game Hauptprogramm
//// -----------------------------------------------------------
//int main()
//{
// // Zufall initialisieren
// srand(time(NULL));
//
// // Fenster und Kamera
// InitWindow(800, 600, "3D Memory Game with Matrix3D Library");
// SetTargetFPS(60);
//
// Camera3D camera{};
// camera.position = {6.0f, 6.0f, 6.0f};
// camera.target = {0.0f, 0.0f, 0.0f};
// camera.up = {0.0f, 1.0f, 0.0f};
// camera.fovy = 45.0f;
// camera.projection = CAMERA_PERSPECTIVE;
//
// // Nur 3 Farben für 3 Paare
// Color colors[] = { RED, GREEN, BLUE };
//
// // 6 Karten-Positionen im 3x2 Raster
// std::vector<Vec3> positions = {{-2, 0, -2}, {0, 0, -2}, {2, 0, -2},{-2, 0, 0}, {0, 0, 0}, {2, 0, 0}};
//
// // Farben doppelt in einen Pool legen und mischen
// std::vector<Color> colorPool;
// for (int i = 0; i < 3; i++)
// {
// colorPool.push_back(colors[i]);
// colorPool.push_back(colors[i]);
// }
//
// // Fisher-Yates Shuffle mit rand()
// for (int i = colorPool.size() - 1; i > 0; --i)
// {
// int j = rand() % (i + 1); // Zufallsindex von 0 bis i
// std::swap(colorPool[i], colorPool[j]);
// }
//
// // Karten/Würfel erstellen
// std::vector<gamecube> cubes;
// for (int i = 0; i < 6; i++)
// cubes.emplace_back(positions[i], colorPool[i]);
//
// gamecube* first = nullptr;
// gamecube* second = nullptr;
// float flipSpeed = 5.0f; // Drehgeschwindigkeit
// bool gameWon = false;
//
// // -----------------------------------------------------------
// // Hauptspielschleife
// // -----------------------------------------------------------
// while (!WindowShouldClose())
// {
// // Klick-Erkennung
// if (!gameWon && IsMouseButtonPressed(MOUSE_LEFT_BUTTON))
// {
// Vector2 mouse = GetMousePosition();
//
// for (auto &c : cubes)
// {
// if (!c.IsFlipped() && !c.IsMatched())
// {
// Vector2 screenPos = GetWorldToScreen({c.GetPosition().x, c.GetPosition().y, c.GetPosition().z}, camera);
//
// if (fabs(mouse.x - screenPos.x) < 40 && fabs(mouse.y - screenPos.y) < 40)
// c.FlipForward();
// }
// }
// }
//
// // Animation aller Würfel
// for (auto &c : cubes)
// {
// c.Update(flipSpeed);
//
// // Sobald ein Würfel vollständig umgedreht ist → merken
// if (c.IsFlipped() && !c.IsMatched())
// {
// if (!first) first = &c;
// else if (!second && &c != first) second = &c;
// }
// }
//
// // Matching-Logik
// if (first && second)
// {
// Color col1 = first->GetColor();
// Color col2 = second->GetColor();
//
// if (col1.r == col2.r && col1.g == col2.g && col1.b == col2.b)
// {
// first->SetMatched(true);
// second->SetMatched(true);
// }
// else
// {
// first->FlipBackward();
// second->FlipBackward();
// }
//
// first = second = nullptr;
// }
//
// // Gewinnprüfung
// if (!gameWon)
// gameWon = std::all_of(cubes.begin(), cubes.end(), [](const gamecube &c){ return c.IsMatched(); });
//
// // -----------------------------------------------------------
// // Zeichnen
// // -----------------------------------------------------------
// BeginDrawing();
// ClearBackground(RAYWHITE);
// BeginMode3D(camera);
//
// for (auto &c : cubes)
// c.Draw();
//
// EndMode3D();
//
// if (gameWon)
// DrawText("Congrats! You found all pairs!", 150, 260, 30, DARKBLUE);
// else
// DrawText("Flip 2 cubes - find matching pairs!", 10, 10, 20, DARKGRAY);
//
// EndDrawing();
// }
//
// CloseWindow();
// return 0;
//}
srand(time(NULL));
double startTime = 0.0;
double endTime = 0.0;
bool timerStarted = false;
GameScreen currentScreen = MENU;
int selectedPairs = 3;
// 1. SPIELSPEZIFISCHE VARIABLEN HIER DEKLARIEREN (ohne Initialisierung)
std::vector<gamecube> cubes;
gamecube* first = nullptr;
gamecube* second = nullptr;
float flipSpeed = 5.0f; // Drehgeschwindigkeit
bool gameWon = false;
// Fenster und Kamera
InitWindow(800, 600, "3D Memory Game with Matrix3D Library");
SetTargetFPS(60);
Camera3D camera{};
camera.position = {6.0f, 6.0f, 6.0f};
camera.target = {0.0f, 0.0f, 0.0f};
camera.up = {0.0f, 1.0f, 0.0f};
camera.fovy = 45.0f;
camera.projection = CAMERA_PERSPECTIVE;
// -----------------------------------------------------------
// Hauptspielschleife
// -----------------------------------------------------------
while (!WindowShouldClose())
{
// -------------------------------------------------------
// UPDATE-LOGIK NACH ZUSTAND
// -------------------------------------------------------
switch (currentScreen)
{
case MENU:
{
// Menü-Abfrage: Auf Tastendruck warten
if (IsKeyPressed(KEY_THREE)) {
selectedPairs = 3; // 6 Würfel
SetupGame(cubes, selectedPairs);
gameWon = false;
first = second = nullptr;
currentScreen = GAMEPLAY;
timerStarted = false; // Timer-Reset
} else if (IsKeyPressed(KEY_SIX)) {
selectedPairs = 6; // 12 Würfel
SetupGame(cubes, selectedPairs);
gameWon = false;
first = second = nullptr;
currentScreen = GAMEPLAY;
timerStarted = false; // Timer-Reset
}
break;
}
case GAMEPLAY:
{
// Timer starten
if (!timerStarted)
{
startTime = GetTime();
timerStarted = true;
}
// Klick-Erkennung
if (!gameWon && IsMouseButtonPressed(MOUSE_LEFT_BUTTON))
{
Vector2 mouse = GetMousePosition();
for (auto &c : cubes)
{
if (!c.IsFlipped() && !c.IsMatched())
{
Vector2 screenPos = GetWorldToScreen({c.GetPosition().x, c.GetPosition().y, c.GetPosition().z}, camera);
if (fabs(mouse.x - screenPos.x) < 40 && fabs(mouse.y - screenPos.y) < 40)
c.FlipForward();
}
}
}
// Animation aller Würfel
for (auto &c : cubes)
{
c.Update(flipSpeed);
if (c.IsFlipped() && !c.IsMatched())
{
if (!first) first = &c;
else if (!second && &c != first) second = &c;
}
}
// Matching-Logik
if (first && second)
{
Color col1 = first->GetColor();
Color col2 = second->GetColor();
if (col1.r == col2.r && col1.g == col2.g && col1.b == col2.b)
{
first->SetMatched(true);
second->SetMatched(true);
}
else
{
first->FlipBackward();
second->FlipBackward();
}
first = second = nullptr;
}
// Gewinnprüfung
if (!gameWon)
{
// Prüft, ob ALLE Würfel gematcht sind
gameWon = std::all_of(cubes.begin(), cubes.end(), [](const gamecube &c){ return c.IsMatched(); });
if (gameWon)
{
endTime = GetTime() - startTime;
}
}
break;
} // ENDE GAMEPLAY UPDATE
}
// -----------------------------------------------------------
// ZEICHNEN NACH ZUSTAND
// -----------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
switch (currentScreen)
{
case MENU:
{
// Menü-Darstellung
DrawText("3D MEMORY SPIEL", GetScreenWidth() / 2 - MeasureText("3D MEMORY SPIEL", 50) / 2, 80, 50, DARKGRAY);
DrawText("Waehlen Sie die Spielgroesse:", 50, 200, 25, BLACK);
DrawText("Druecken Sie [3] fuer 3 Paare (6 Wuerfel)", 50, 240, 20, BLUE);
DrawText("Druecken Sie [6] fuer 6 Paare (12 Wuerfel)", 50, 280, 20, BLUE);
break;
}
case GAMEPLAY:
{
// Spiel-Darstellung
BeginMode3D(camera);
for (auto &c : cubes)
c.Draw();
EndMode3D();
if (gameWon)
{
DrawText("Congrats! You found all pairs!", 150, 260, 30, DARKBLUE);
char buffer[64];
sprintf(buffer, "Cleared in %.2f seconds", endTime);
DrawText(buffer, 150, 300, 28, DARKGREEN);
}
else
{
DrawText("Flip 2 cubes - find matching pairs!", 10, 10, 20, DARKGRAY);
char liveBuf[64];
sprintf(liveBuf, "Time: %.2f", GetTime() - startTime);
DrawText(liveBuf, 10, 40, 20, DARKGRAY);
}
break;
} // ENDE GAMEPLAY DRAW
}
EndDrawing();
}
CloseWindow();
return 0;
}

View File

@ -1,99 +0,0 @@
#include <iostream>
#include <array>
#include <cmath>
#include "gamematrix.h"
using Matrix4 = std::array<std::array<double,4>,4>;
using Vec3 = std::array<double,3>;
bool eq(double a, double b) {
return std::fabs(a - b) < 0.0001;
}
Matrix4 identity() {
Matrix4 I{};
for (int i = 0; i < 4; i++) {
I[i][i] = 1.0;
}
return I;
}
Vec3 applyMatrix(const Matrix4& M, const Vec3& v) {
Vec3 r{0,0,0};
r[0] = M[0][0]*v[0] + M[0][1]*v[1] + M[0][2]*v[2] + M[0][3];
r[1] = M[1][0]*v[0] + M[1][1]*v[1] + M[1][2]*v[2] + M[1][3];
r[2] = M[2][0]*v[0] + M[2][1]*v[1] + M[2][2]*v[2] + M[2][3];
return r;
}
void testMatmulIdentity() {
Matrix4 A = identity();
Matrix4 B = identity();
Matrix4 C = Matrix3D::gameMatrix::matmul(A, B);
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
double expected = (i == j ? 1.0 : 0.0);
if (!eq(C[i][j], expected)) {
std::cout << "[FAIL] matmul Identity\n";
return;
}
}
}
std::cout << "[OK] matmul Identity\n";
}
void testTranslate() {
Vec3 pos{1,2,3};
Matrix4 T = Matrix3D::gameMatrix::translate(pos);
if (eq(T[0][3], 1) && eq(T[1][3], 2) && eq(T[2][3], 3))
std::cout << "[OK] translate\n";
else
std::cout << "[FAIL] translate\n";
}
void testRotZ90() {
Vec3 v{1,0,0};
Matrix4 R = Matrix3D::gameMatrix::rot3D(90, 'z');
Vec3 r = applyMatrix(R, v);
if (eq(r[0], 0) && eq(r[1], 1) && eq(r[2], 0))
std::cout << "[OK] rotZ 90°\n";
else
std::cout << "[FAIL] rotZ 90°\n";
}
void testRotX180() {
Vec3 v{0,1,0};
Matrix4 R = Matrix3D::gameMatrix::rot3D(180, 'x');
Vec3 r = applyMatrix(R, v);
if (eq(r[0], 0) && eq(r[1], -1) && eq(r[2], 0))
std::cout << "[OK] rotX 180°\n";
else
std::cout << "[FAIL] rotX 180°\n";
}
void testRotY270() {
Vec3 v{1,0,0};
Matrix4 R = Matrix3D::gameMatrix::rot3D(270, 'y');
Vec3 r = applyMatrix(R, v);
if (eq(r[0], 0) && eq(r[1], 0) && eq(r[2], 1))
std::cout << "[OK] rotY 270°\n";
else
std::cout << "[FAIL] rotY 270°\n";
}
int main() {
testMatmulIdentity();
testTranslate();
testRotZ90();
testRotX180();
testRotY270();
return 0;
}

View File

@ -1,36 +0,0 @@
============================================================
Projekt: gamematrix (C++ Library)
Rolle: Tester
Datei: tests.txt
============================================================
# 1. Testplan Übersicht
Ziel: Überprüfung der Funktionen matmul(), translate(), rot3D().
---------------------------------------------------------------------------------------------------------------
| Funktion | Testfall | Eingabe | Erwartetes Ergebnis | Bemerkung |
|---------|------------------------|----------------------------------------------|---------------------------|---------------------------------|
| matmul | Identity * Identity | 4x4 Identity Matrizen | Identity | Basisfall |
| translate | Verschiebung | Vec3(1,2,3) | Matrix mit Translation | Letzte Spalte prüfen |
| rot3D | Rotation Z 90° | angle=90, axis='z', v=(1,0,0) | (0,1,0) | Anwendung auf Vektor |
| rot3D | Rotation X 180° | angle=180, axis='x', v=(0,1,0) | (0,-1,0) | Anwendung auf Vektor |
| rot3D | Rotation Y 270° | angle=270, axis='y', v=(1,0,0) | (0,0,-1) | Anwendung auf Vektor |
---------------------------------------------------------------------------------------------------------------
# 2. Testdaten
- Matrizen für matmul: zwei Identity-Matrizen
- Vektoren für translate: Vec3(1,2,3)
- Vektoren für rot3D: (1,0,0), (0,1,0)
# 3. Abnahmekriterien
- Alle Testfälle laufen ohne Fehler durch.
- Ergebnisse stimmen mit erwarteten Ergebnissen überein.
- Keine unerwarteten Exceptions.
- Tester dokumentiert Erfolg oder Fehler im Terminal.
============================================================
Hinweis: Datei wird vom Tester gepflegt.
============================================================