import cv2 import mediapipe as mp import json, time, math, numpy as np from pythonosc import udp_client # Verbindung zum Spiel herstellen client = udp_client.SimpleUDPClient("127.0.0.1", 5005) # Hilfsfunktion zur Kalibrierung (wie zuvor) def map_to_screen(x, y, calib_points, screen_size=(800, 600)): pts_src = np.array(calib_points, dtype=np.float32) pts_dst = np.array([ [0, 0], [screen_size[0], 0], [screen_size[0], screen_size[1]], [0, screen_size[1]] ], dtype=np.float32) M = cv2.getPerspectiveTransform(pts_src, pts_dst) p = np.array([[[x, y]]], dtype=np.float32) mapped = cv2.perspectiveTransform(p, M)[0][0] return int(mapped[0]), int(mapped[1]) def run_gesture_input(touch_cam_index=0, gesture_cam_index=1, screen_size=(800, 600)): mp_hands = mp.solutions.hands mp_draw = mp.solutions.drawing_utils hands_touch = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.6) hands_gesture = mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.6) # Kalibrierung laden try: calib_points = json.load(open("calibration.json")) print("📄 Kalibrierung geladen:", calib_points) except: print("⚠️ Keine calibration.json – zuerst calibrate_touch.py ausführen!") return cam_touch = cv2.VideoCapture(touch_cam_index) cam_gesture = cv2.VideoCapture(gesture_cam_index) prev_clap_time = 0 clap_cooldown = 1.5 while True: ok1, frame_touch = cam_touch.read() ok2, frame_gest = cam_gesture.read() if not ok1 or not ok2: print("⚠️ Kamera nicht verfügbar"); break frame_touch = cv2.flip(frame_touch, 1) frame_gest = cv2.flip(frame_gest, 1) # --- Touch-Erkennung --- rgb_t = cv2.cvtColor(frame_touch, cv2.COLOR_BGR2RGB) res_t = hands_touch.process(rgb_t) h, w, _ = frame_touch.shape if res_t.multi_hand_landmarks: lm = res_t.multi_hand_landmarks[0] mp_draw.draw_landmarks(frame_touch, lm, mp_hands.HAND_CONNECTIONS) fx = int(lm.landmark[8].x * w) fy = int(lm.landmark[8].y * h) sx, sy = map_to_screen(fx, fy, calib_points, screen_size) if lm.landmark[8].y > 0.8: client.send_message("/touch", [sx, sy]) cv2.putText(frame_touch, f"Touch ({sx},{sy})", (40, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2) # --- Clap-Erkennung --- rgb_g = cv2.cvtColor(frame_gest, cv2.COLOR_BGR2RGB) res_g = hands_gesture.process(rgb_g) gh, gw, _ = frame_gest.shape if res_g.multi_hand_landmarks and len(res_g.multi_hand_landmarks) == 2: h1, h2 = res_g.multi_hand_landmarks x1 = np.mean([p.x for p in h1.landmark]) * gw y1 = np.mean([p.y for p in h1.landmark]) * gh x2 = np.mean([p.x for p in h2.landmark]) * gw y2 = np.mean([p.y for p in h2.landmark]) * gh dist = math.hypot(x2 - x1, y2 - y1) if dist < 100 and (time.time() - prev_clap_time) > clap_cooldown: client.send_message("/clap", 1) prev_clap_time = time.time() cv2.putText(frame_gest, "👏", (int(gw / 2) - 20, 80), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 255), 3) cv2.imshow("Touch-Cam", frame_touch) cv2.imshow("Gesture-Cam", frame_gest) if cv2.waitKey(5) & 0xFF == 27: break cam_touch.release() cam_gesture.release() cv2.destroyAllWindows() if __name__ == "__main__": run_gesture_input()