import cv2, mediapipe as mp, json, time, math, numpy as np from multiprocessing import Queue # --------------- Hilfsfunktion: Projektionsfläche auf Bildschirm mappen --------------- def map_to_screen(x, y, calib_points, screen_size=(800, 600)): pts_src = np.array(calib_points, dtype=np.float32) pts_dst = np.array([[0,0],[screen_size[0],0], [screen_size[0],screen_size[1]],[0,screen_size[1]]], dtype=np.float32) M = cv2.getPerspectiveTransform(pts_src, pts_dst) p = np.array([[[x,y]]], dtype=np.float32) mapped = cv2.perspectiveTransform(p, M)[0][0] return int(mapped[0]), int(mapped[1]) # --------------- Hauptfunktion --------------- def run_gesture_input(queue: Queue, touch_cam_index=0, gesture_cam_index=1, screen_size=(800,600)): mp_hands = mp.solutions.hands mp_draw = mp.solutions.drawing_utils hands_touch = mp_hands.Hands(max_num_hands=1, min_detection_confidence=0.6) hands_gesture = mp_hands.Hands(max_num_hands=2, min_detection_confidence=0.6) # Kalibrierung laden try: calib_points = json.load(open("calibration.json")) print("📄 Kalibrierung geladen:", calib_points) except: print("⚠️ Keine calibration.json – zuerst calibrate_touch.py ausführen!") return cam_touch = cv2.VideoCapture(touch_cam_index) cam_gesture = cv2.VideoCapture(gesture_cam_index) prev_clap_time = 0 clap_cooldown = 1.5 while True: ok1, frame_touch = cam_touch.read() ok2, frame_gest = cam_gesture.read() if not ok1 or not ok2: print("⚠️ Kamera nicht verfügbar"); break frame_touch = cv2.flip(frame_touch, 1) frame_gest = cv2.flip(frame_gest, 1) # ---------- Touch erkennen ---------- rgb_t = cv2.cvtColor(frame_touch, cv2.COLOR_BGR2RGB) res_t = hands_touch.process(rgb_t) h, w, _ = frame_touch.shape if res_t.multi_hand_landmarks: lm = res_t.multi_hand_landmarks[0] mp_draw.draw_landmarks(frame_touch, lm, mp_hands.HAND_CONNECTIONS) fx = int(lm.landmark[8].x * w) fy = int(lm.landmark[8].y * h) sx, sy = map_to_screen(fx, fy, calib_points, screen_size) if lm.landmark[8].y > 0.8: queue.put(("touch",(sx,sy))) cv2.putText(frame_touch,f"Touch ({sx},{sy})",(40,60), cv2.FONT_HERSHEY_SIMPLEX,0.8,(0,255,0),2) # ---------- Klatschen / Bewegung ---------- rgb_g = cv2.cvtColor(frame_gest, cv2.COLOR_BGR2RGB) res_g = hands_gesture.process(rgb_g) gh, gw, _ = frame_gest.shape if res_g.multi_hand_landmarks and len(res_g.multi_hand_landmarks)==2: h1, h2 = res_g.multi_hand_landmarks x1 = np.mean([p.x for p in h1.landmark])*gw y1 = np.mean([p.y for p in h1.landmark])*gh x2 = np.mean([p.x for p in h2.landmark])*gw y2 = np.mean([p.y for p in h2.landmark])*gh dist = math.hypot(x2-x1, y2-y1) if dist < 100 and (time.time()-prev_clap_time)>clap_cooldown: queue.put(("clap",None)) prev_clap_time=time.time() cv2.putText(frame_gest,"👏",(int(gw/2)-20,80), cv2.FONT_HERSHEY_SIMPLEX,2,(0,255,255),3) # Anzeigen cv2.imshow("Touch-Cam", frame_touch) cv2.imshow("Gesture-Cam", frame_gest) if cv2.waitKey(5)&0xFF==27: break cam_touch.release() cam_gesture.release() cv2.destroyAllWindows()