global_match_memory/gesture_input_osc_re1.py
2025-12-11 11:22:35 +01:00

200 lines
5.9 KiB
Python

import cv2
import mediapipe as mp
import numpy as np
import math, time, json
from pythonosc import udp_client
# -------------------------------
# SETTINGS
# -------------------------------
TOUCH_CAM_INDEX = 1
GESTURE_CAM_INDEX = 0
GAME_SCREEN_WIDTH = 900 #900
GAME_SCREEN_HEIGHT = 600 #600
STILL_REQUIRED = 1.0
MOVE_TOLERANCE = 25
# -------------------------------
# CAMERA / PERFORMANCE SETTINGS
# -------------------------------
CAMERA_FPS = 15
DISPLAY_WIDTH = 320 #1280
DISPLAY_HEIGHT = 240 #720
MODEL_COMPLEXITY = 0 # ✅ 0=fast | 1=balanced | 2=accurate
client = udp_client.SimpleUDPClient("127.0.0.1", 5005)
# -------------------------------
# GLOBAL STATES
# -------------------------------
last_finger_pos = None
finger_still_start = None
prev_touch_time = 0.0
prev_clap_time = 0.0
# -------------------------------
# CALIBRATION + HOMOGRAPHY
# -------------------------------
try:
with open("calibration.json", "r") as f:
CALIB_POINTS = json.load(f)
print("📐 Calibration loaded:", CALIB_POINTS)
except:
CALIB_POINTS = None
print("⚠️ No calibration found")
H = None
if CALIB_POINTS is not None:
src = np.array(CALIB_POINTS, dtype=np.float32)
dst = np.array([
[0, 0],
[GAME_SCREEN_WIDTH, 0],
[GAME_SCREEN_WIDTH, GAME_SCREEN_HEIGHT],
[0, GAME_SCREEN_HEIGHT]
], dtype=np.float32)
H, _ = cv2.findHomography(src, dst)
print("📐 Homography ready")
def map_point_homography(x, y):
if H is None:
return int(x), int(y)
p = np.array([[[x, y]]], dtype=np.float32)
mapped = cv2.perspectiveTransform(p, H)[0][0]
return int(mapped[0]), int(mapped[1])
# -----------------------------------------------------------------
def run_gesture_input():
global last_finger_pos, finger_still_start
global prev_touch_time, prev_clap_time
mp_hands = mp.solutions.hands
mp_draw = mp.solutions.drawing_utils
# ✅ model_complexity applied here
hands_touch = mp_hands.Hands(
max_num_hands=1,
model_complexity=MODEL_COMPLEXITY,
min_detection_confidence=0.6,
min_tracking_confidence=0.6
)
hands_gesture = mp_hands.Hands(
max_num_hands=2,
model_complexity=MODEL_COMPLEXITY,
min_detection_confidence=0.6,
min_tracking_confidence=0.6
)
cam_touch = cv2.VideoCapture(TOUCH_CAM_INDEX)
cam_gesture = cv2.VideoCapture(GESTURE_CAM_INDEX)
for cam in (cam_touch, cam_gesture):
cam.set(cv2.CAP_PROP_FRAME_WIDTH, DISPLAY_WIDTH)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, DISPLAY_HEIGHT)
cam.set(cv2.CAP_PROP_FPS, CAMERA_FPS)
clap_cooldown = 1.5
frame_duration = 1.0 / CAMERA_FPS
last_frame_time = time.time()
while True:
ok1, frame_touch = cam_touch.read()
ok2, frame_gest = cam_gesture.read()
if not ok1 or not ok2:
break
frame_touch = cv2.flip(frame_touch, -1)
frame_gest = cv2.flip(frame_gest, 1)
# ---------------- TOUCH ----------------
res_t = hands_touch.process(cv2.cvtColor(frame_touch, cv2.COLOR_BGR2RGB))
th, tw, _ = frame_touch.shape
if res_t.multi_hand_landmarks:
lm = res_t.multi_hand_landmarks[0]
mp_draw.draw_landmarks(frame_touch, lm, mp_hands.HAND_CONNECTIONS)
if lm.landmark[8].y < lm.landmark[5].y:
last_finger_pos = None
finger_still_start = None
continue
fx = int(lm.landmark[8].x * tw)
fy = int(lm.landmark[8].y * th)
sx, sy = map_point_homography(fx, fy)
now = time.time()
curr = (fx, fy)
if last_finger_pos is None:
last_finger_pos = curr
finger_still_start = now
else:
dist = math.hypot(curr[0]-last_finger_pos[0],
curr[1]-last_finger_pos[1])
if dist < MOVE_TOLERANCE:
if finger_still_start and now-finger_still_start >= STILL_REQUIRED:
if now-prev_touch_time > 0.5:
client.send_message("/touch", [sx, sy])
print(f"👉 TOUCH {sx},{sy}")
prev_touch_time = now
finger_still_start = None
else:
finger_still_start = now
last_finger_pos = curr
cv2.circle(frame_touch, (fx, fy), 10, (0,255,0), -1)
else:
last_finger_pos = None
finger_still_start = None
# ---------------- CLAP ----------------
res_g = hands_gesture.process(cv2.cvtColor(frame_gest, cv2.COLOR_BGR2RGB))
gh, gw, _ = frame_gest.shape
if res_g.multi_hand_landmarks and len(res_g.multi_hand_landmarks) == 2:
h1, h2 = res_g.multi_hand_landmarks
x1 = np.mean([p.x for p in h1.landmark]) * gw
y1 = np.mean([p.y for p in h1.landmark]) * gh
x2 = np.mean([p.x for p in h2.landmark]) * gw
y2 = np.mean([p.y for p in h2.landmark]) * gh
dist = math.hypot(x2-x1, y2-y1)
if dist < 100 and time.time()-prev_clap_time > clap_cooldown:
prev_clap_time = time.time()
client.send_message("/clap", 1)
print("👏 CLAP")
cv2.putText(frame_touch,
f"FPS:{CAMERA_FPS} MC:{MODEL_COMPLEXITY}",
(10,30), cv2.FONT_HERSHEY_SIMPLEX,
0.8, (255,255,0), 2)
cv2.imshow("Touch-Cam", frame_touch)
cv2.imshow("Gesture-Cam", frame_gest)
# FPS limiter
sleep = frame_duration - (time.time()-last_frame_time)
if sleep > 0:
time.sleep(sleep)
last_frame_time = time.time()
if cv2.waitKey(1) & 0xFF == 27:
break
cam_touch.release()
cam_gesture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
run_gesture_input()