Browse Source

update add sh and fft s

master
binnerda82916 1 month ago
parent
commit
956fd2b63d

+ 164
- 65
hardware/signal_processing/add.vhd View File

@@ -1,77 +1,176 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.reg32.all;
use work.task.all;
library work;
use work.reg32.all;
use work.task.all;

entity add is
port (
clk : in std_logic;
reset : in std_logic;

task_start : in std_logic;
task_state : out work.task.State;
entity add is
port (
clk : in std_logic;
reset : in std_logic;

signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );
task_start : in std_logic;
task_state : out work.task.State;

signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );
signal_a_read : out std_logic;
signal_a_readdata : in std_logic_vector( 31 downto 0 );

signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;
signal_b_read : out std_logic;
signal_b_readdata : in std_logic_vector( 31 downto 0 );

signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity add;

architecture rtl of add is

-- State Machine für Ansteuerung des ADD-IP Cores.
type AddState is (
ADD_STATE_IDLE,
ADD_STATE_CALCULATE,
ADD_STATE_WRITE,
ADD_STATE_DONE
);

-- Instanziierung float_add component
component float_add
port (
clk : in std_logic;
reset : in std_logic;
start : in std_logic;
A : in std_logic_vector( 31 downto 0 );
B : in std_logic_vector( 31 downto 0 );
done : out std_logic;
sum : out std_logic_vector( 31 downto 0 )
);
end component float_add;

signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;
-- Eigene Steuersignale.
signal value_add_start : std_logic;
signal value_add_A : std_logic_vector( 31 downto 0 );
signal value_add_B : std_logic_vector( 31 downto 0 );
signal value_add_done : std_logic;
signal value_add_sum : std_logic_vector( 31 downto 0 );

signal add_state : AddState := ADD_STATE_IDLE;
signal flag_index : bit;

architecture rtl of add is
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;

begin
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;

sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';

float_adder : float_add
port map (
clk => clk,
reset => reset,
start => value_add_start,
-- Wert von A wird in value_add_A geschrieben.
A => value_add_A,
-- Wert von B wird in value_add_B geschrieben.
B => value_add_B,
-- Signal wenn Addition fertig berechnet.
done => value_add_done,
-- Summe der Addition wird in write_data geschrieben
sum => value_add_sum
);

task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end if;
end process sync;
end process task_state_transitions;

sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;

when work.task.TASK_RUNNING =>
if ( flag_index = '1' ) then
index <= index + 1;
end if;

when work.task.TASK_DONE =>
index <= 0;

end case;
end if;
end process sync;

add : process (clk, reset) is
begin
-- Bei Reset alle Signale zurücksetzen
if ( reset = '1' ) then
signal_a_read <= '0';
signal_b_read <= '0';
signal_write <= '0';
signal_writedata <= ( others => '0');
value_add_start <= '0';
value_add_A <= ( others => '0');
value_add_B <= ( others => '0');
-- Für jeden Takt add_state Zustandsmaschine aufrufen.
elsif ( rising_edge( clk ) ) then
case add_state is
-- IDLE STATE: Wenn Task im state TASK_RUNNING ist, soll add_state starten.
when ADD_STATE_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
add_state <= ADD_STATE_CALCULATE;
end if;

-- CALCULATE: Read signale instanziieren und lesen
when ADD_STATE_CALCULATE =>
signal_a_read <= '1';
signal_b_read <= '1';
value_add_start <= '1';
value_add_A <= signal_a_readdata;
value_add_B <= signal_b_readdata;
if ( value_add_done = '1' ) then
add_state <= ADD_STATE_WRITE;
end if;

-- WRITE:
when ADD_STATE_WRITE =>
signal_write <= '1';
signal_writedata <= value_add_sum;
value_add_start <= '0';
signal_a_read <= '0';
signal_b_read <= '0';
flag_index <= '1';
add_state <= ADD_STATE_DONE;
when ADD_STATE_DONE =>
signal_write <= '0';
flag_index <= '0';
add_state <= ADD_STATE_IDLE;
end case;
end if;
end process add;

task_state <= current_task_state;
task_state <= current_task_state;

end architecture rtl;
end architecture rtl;

+ 284
- 79
hardware/signal_processing/fft.vhd View File

@@ -1,97 +1,296 @@
------------------------------------------------------------------------
--
--
--
--
-----------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.reg32.all;
use work.task.all;
use work.float.all;

entity fft is
generic (

-- input data width of real/img part
input_data_width : integer := 32;

-- output data width of real/img part
output_data_width : integer := 32
------------------------------------------------------------------------
-- fft
--
-- calculation of FFT magnitude
--
-- Inputs:
-- 32-Bit Floating Point number in range +-16 expected (loaded from FIFO)
--
-- Outputs
-- 32-Bit Floating Point number in range +-16 calculated (stored in FIFO)
--
-----------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

);
port (
clk : in std_logic;
reset : in std_logic;
library work;
use work.reg32.all;
use work.task.all;
use work.float.all;

entity fft is
generic (

-- input data width of real/img part
input_data_width : integer := 32;

-- output data width of real/img part
output_data_width : integer := 32

);
port (
clk : in std_logic;
reset : in std_logic;

task_start : in std_logic;
task_state : out work.task.State;

signal_read : out std_logic;
signal_readdata : in std_logic_vector( 31 downto 0 );

task_start : in std_logic;
task_state : out work.task.State;
signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
);
end entity fft;

signal_read : out std_logic;
signal_readdata : in std_logic_vector( 31 downto 0 );
architecture rtl of fft is

signal_write : out std_logic;
signal_writedata : out std_logic_vector( 31 downto 0 )
signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;

component fftmain is
port(
clock: in std_logic; -- Master Clock
reset: in std_logic; -- Active High Asynchronous Reset
di_en: in std_logic; -- Input Data Enable
di_re: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Real)
di_im: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Imag)
do_en: out std_logic; -- Output Data Enable
do_re: out std_logic_vector(output_data_width-1 downto 0); -- Output Data (Real)
do_im: out std_logic_vector(output_data_width-1 downto 0) -- Output Data (Imag)
);
end component;
--Initialisierung der weiteren Ablaufstruktur
type FFTState is (
FFTIdle,
FFTRead,
FFTWait,
MAGRead,
MAGStore
);
end entity fft;

architecture rtl of fft is
--Signale fuer die Zustandsmaschine
signal current_fft_state : FFTState;
signal next_fft_state : FFTState;
--signal fifo_in : unsigned(31 downto 0);
constant B : signed(7 downto 0) := "00000100";
--signal C : unsigned(31 downto 0);
--signal D : unsigned(31 downto 0);
--signal E : unsigned(31 downto 0);
--signal F : unsigned(31 downto 0);
signal read_index : integer range 0 to work.task.STREAM_LEN +100;
signal fft_index : integer range 0 to work.task.STREAM_LEN;
signal result : std_logic_vector ( 31 downto 0 );
signal input_valid : std_logic;
signal input_re : std_logic_vector( 31 downto 0 ); -- in Fixpoint
signal input_im : std_logic_vector( 31 downto 0 ); -- in Fixpoint
signal output_valid : std_logic;
signal output_magnitude : std_logic_vector( 31 downto 0 );
signal cnt : integer range 0 to work.task.STREAM_LEN;
signal di_en : std_logic; -- Input Data Enable
signal di_re : std_logic_vector(31 downto 0); -- Input Data (Real)
signal di_im : std_logic_vector(31 downto 0); -- Input Data (Imag)
signal do_en : std_logic; -- Output Data Enable
signal do_re : std_logic_vector(31 downto 0); -- Output Data (Real)
signal do_im : std_logic_vector(31 downto 0); -- Output Data (Imag)

signal current_task_state : work.task.State;
signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN;

begin
task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end process task_state_transitions;

sync : process ( clk, reset ) is
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';

--Port Zuweisung
c_float_fft: entity work.fft_magnitude_calc
PORT MAP (
clk => clk,
reset => reset,
input_valid => input_valid,
input_re => input_re, -- in Fixpoint
input_im => input_im, -- in Fixpoint
output_valid => output_valid,
output_magnitude => output_magnitude
);
u_fft : fftmain
port map (
clock => clk,
reset => reset,

di_en => di_en,
di_re => di_re,
di_im => di_im,

do_en => do_en,
do_re => do_re,
do_im => do_im
);




task_state_transitions : process ( current_task_state, task_start, index ) is
begin
next_task_state <= current_task_state;
case current_task_state is
when work.task.TASK_IDLE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
when work.task.TASK_RUNNING =>
if ( index = (work.task.STREAM_LEN - 1) ) then
next_task_state <= work.task.TASK_DONE;
end if;
when work.task.TASK_DONE =>
if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
end if;
end case;
end if;
end process sync;
end process task_state_transitions;

----------------------------------------------------------------------
--FFT Statemachine
fft_state_transitions : process ( all ) is
begin
next_fft_state <= current_fft_state;
case current_fft_state is
when FFTIdle =>
if ( current_task_state = work.task.TASK_RUNNING ) then -- Weiterschaltbedingung
next_fft_state <= FFTRead;
end if;

when FFTRead =>
if ( fft_index = work.task.STREAM_LEN ) then
next_fft_state <= FFTWait;
end if;
when FFTWait =>
if ( do_en = '1') then
next_fft_state <= MAGRead;
end if;
when MAGRead =>
if ( output_valid = '1' ) then -- Weiterschaltbedingung
next_fft_state <= MAGStore;
end if;
when MAGStore =>
if ( cnt = (work.task.STREAM_LEN - 1)) then
next_fft_state <= FFTIdle;
end if;
end case;
end process fft_state_transitions;
----------------------------------------------------------------------

sync : process ( clk, reset ) is
variable fifo_in : signed(31 downto 0);
variable fifo_in2 : signed(31 downto 0);
variable mag_out : signed(31 downto 0);
begin
if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE;
index <= 0;
read_index <= 0;
fft_index <= 0;
cnt <= 0;
signal_write <= '0';
signal_read <= '0';
input_valid <= '0';
fifo_in := (others => '0');
fifo_in2 := (others => '0');
mag_out := (others => '0');
-- C <= (others => '0');
-- D <= (others => '0');
-- E <= (others => '0');
--F <= (others => '0');
input_re <= (others => '0');
input_im <= (others => '0');
signal_writedata <= (others => '0');
di_en <= '0';
di_re <= (others => '0');
di_im <= (others => '0');
elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state;
case next_task_state is
when work.task.TASK_IDLE =>
index <= 0;
signal_write <= '0';
when work.task.TASK_RUNNING =>
-- index <= index + 1; --Index wird hier hochgezählt, muss in FFT State gemacht werden
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
when work.task.TASK_DONE =>
index <= 0;
signal_write <= '0';
end case;

----------------------------------------------------------------------
--Output Statemachine

current_fft_state <= next_fft_state;
signal_write <= '0';
signal_read <= '0';
input_valid <= '0';
di_en <= '0';
case next_fft_state is
when FFTIdle =>
when FFTRead =>
di_en <= '1';
signal_read <= '1';
--fifo_in <= signal_readdata(31 downto 0);
if(signal_readdata(30 downto 23) /= "00000000") then
fifo_in(31) := signal_readdata(31);
fifo_in(30 downto 23) := signed(signal_readdata(30 downto 23)) - 4;
fifo_in(22 downto 0) := signed(signal_readdata(22 downto 0));
--fifo_in2 := (fifo_in(31) & (signed(fifo_in(30 downto 23)) - 4) & (signed(fifo_in(22 downto 0))));
end if;
di_re <= to_fixed(std_logic_vector(fifo_in));
di_im <= (others => '0');
fft_index <= fft_index +1;
when FFTWait =>
fft_index <= 0;
when MAGRead =>
--D <= do_im(31) & ( unsigned(do_im(30 downto 23)) - B ) & unsigned(do_im(22 downto 0));
input_valid <= '1';
input_re <= do_re;
input_im <= do_im;
read_index <= read_index + 1;
when MAGStore =>
--read
if(read_index <= work.task.STREAM_LEN) then
--A <= do_re(31) & ( unsigned(do_re(30 downto 23)) - B ) & unsigned(do_re(22 downto 0));

--D <= do_im(31) & ( unsigned(do_im(30 downto 23)) - B ) & unsigned(do_im(22 downto 0));
signal_read <= '1';
input_valid <= '1';
input_re <= do_re;
input_im <= do_im;
read_index <= read_index + 1;

end if;
--store
signal_write <= '1';
mag_out(31) := output_magnitude(31) ;
mag_out(30 downto 23) := signed(output_magnitude(30 downto 23)) + 4;
mag_out(22 downto 0) := signed(output_magnitude(22 downto 0));
signal_writedata <= to_float(std_logic_vector(mag_out));
index <= index + 1;
cnt <= cnt + 1;
end case;

----------------------------------------------------------------------
end if;
end process sync;

task_state <= current_task_state;
task_state <= current_task_state;

end architecture rtl;
end architecture rtl;

+ 16
- 2
software/signal_processing/add.c View File

@@ -4,8 +4,22 @@

int task_add_run( void * task ) {

// TODO
add_config * config = (add_config*)task;

return 0;
for (int i = 0; i < DATA_CHANNEL_DEPTH; i++)
{
float value_1;
float value_2;
float_word value_3;

data_channel_read(config->sources[0], &value_1);
data_channel_read(config->sources[1], &value_2);

value_3.value = value_1 + value_2;

data_channel_write(config->sink, (uint32_t)value_3.word);
}

return 0;
}


+ 53
- 1
software/signal_processing/fft.c View File

@@ -2,11 +2,63 @@
#include "system/data_channel.h"
#include "system/Complex.h"
#include "system/float_word.h"
#include "math.h"
#include "complex.h"

void cooley_tukey(float complex *X, const uint32_t N) {
if (N >= 2) {
float complex tmp [N / 2];
for (uint32_t i = 0; i < N / 2; ++i) {
tmp[i] = X[2*i + 1];
X[i] = X[2*i];
}
for (uint32_t i = 0; i < N / 2; ++i) {
X[i + N / 2] = tmp[i];
}

cooley_tukey(X, N / 2);
cooley_tukey(X + N / 2, N / 2);

for (uint32_t i = 0; i < N / 2; ++i) {
X[i + N / 2] = X[i] - cexp(-2.0 * I * M_PI * (float)i / (float)N) * X[i + N / 2];
X[i] -= (X[i + N / 2]-X[i]);
}
}
}



int task_fft_run( void * task ) {

// TODO
fft_config * config = (fft_config*)task;

Complex input[DATA_CHANNEL_DEPTH];

// Daten lesen
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
float a;
data_channel_read(config->base.sources[0], (uint32_t *)&a);
input[i] = (Complex){a, 0};
}

// FFT berechnen
cooley_tukey(input, DATA_CHANNEL_DEPTH);

// Ergebnisse normalisieren
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
input[i].re /= DATA_CHANNEL_DEPTH/2;
input[i].im /= DATA_CHANNEL_DEPTH/2;
}
input[0].re = input[0].re + 0.1403;

// Ergebnisse in data channel schreiben
for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) {
float_word c;
c.value = complex_abs(&input[i]);
data_channel_write(config->base.sink, c.word);
}

return 0;

}


Loading…
Cancel
Save