Browse Source

update fft.vhd

master
binnerda82916 1 week ago
parent
commit
b2ecede7f3

+ 157
- 201
hardware/signal_processing/fft.vhd View File

signal next_task_state : work.task.State; signal next_task_state : work.task.State;
signal index : integer range 0 to work.task.STREAM_LEN; signal index : integer range 0 to work.task.STREAM_LEN;


component fftmain is
port(
clock: in std_logic; -- Master Clock
reset: in std_logic; -- Active High Asynchronous Reset
di_en: in std_logic; -- Input Data Enable
di_re: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Real)
di_im: in std_logic_vector(input_data_width-1 downto 0); -- Input Data (Imag)
do_en: out std_logic; -- Output Data Enable
do_re: out std_logic_vector(output_data_width-1 downto 0); -- Output Data (Real)
do_im: out std_logic_vector(output_data_width-1 downto 0) -- Output Data (Imag)
);
end component;
--Initialisierung der weiteren Ablaufstruktur
type FFTState is (
FFTIdle,
FFTRead,
FFTWait,
MAGRead,
MAGStore
);

--Signale fuer die Zustandsmaschine
signal current_fft_state : FFTState;
signal next_fft_state : FFTState;
--signal fifo_in : unsigned(31 downto 0);
constant B : signed(7 downto 0) := "00000100";
--signal C : unsigned(31 downto 0);
--signal D : unsigned(31 downto 0);
--signal E : unsigned(31 downto 0);
--signal F : unsigned(31 downto 0);
signal read_index : integer range 0 to work.task.STREAM_LEN +100;
signal fft_index : integer range 0 to work.task.STREAM_LEN;
signal result : std_logic_vector ( 31 downto 0 );
signal input_valid : std_logic;
signal input_re : std_logic_vector( 31 downto 0 ); -- in Fixpoint
signal input_im : std_logic_vector( 31 downto 0 ); -- in Fixpoint
signal output_valid : std_logic;
signal output_magnitude : std_logic_vector( 31 downto 0 );
signal cnt : integer range 0 to work.task.STREAM_LEN;
signal di_en : std_logic; -- Input Data Enable
signal di_re : std_logic_vector(31 downto 0); -- Input Data (Real)
signal di_im : std_logic_vector(31 downto 0); -- Input Data (Imag)
signal do_en : std_logic; -- Output Data Enable
signal do_re : std_logic_vector(31 downto 0); -- Output Data (Real)
signal do_im : std_logic_vector(31 downto 0); -- Output Data (Imag)

type fft_state_dec is (
FFT_STATE_IDLE,
FFT_STATE_READ,
FFT_STATE_SCALE,
FFT_STATE_FFT,
FFT_STATE_MAGNITUDE,
FFT_STATE_REVERSE_ORDER,
FFT_STATE_WRITE,
FFT_STATE_DONE
);

component FFTMAIN
port (
clock : in std_logic;
reset : in std_logic;
di_en : in std_logic;
di_re : in std_logic_vector(31 downto 0);
di_im : in std_logic_vector(31 downto 0);
do_en : out std_logic;
do_re : out std_logic_vector(31 downto 0);
do_im : out std_logic_vector(31 downto 0)
);
end component;

component fft_magnitude_calc
port (
clk : in std_logic;
reset : in std_logic;
input_valid: in std_logic;
input_re : in std_logic_vector( 31 downto 0 ); -- in Fixpoint
input_im : in std_logic_vector( 31 downto 0 ); -- in Fixpoint
output_valid : out std_logic;
output_magnitude : out std_logic_vector( 31 downto 0 )
);
end component fft_magnitude_calc;

-- Eigene Steuersignale.
signal value_data_in_ready : std_logic;
signal value_data_in_real : std_logic_vector(31 downto 0);
signal value_data_in_real_scaled : std_logic_vector(31 downto 0);
signal value_data_in_imag : std_logic_vector(31 downto 0);
signal value_data_out_ready : std_logic;
signal value_data_out_real : std_logic_vector(31 downto 0);
signal value_data_out_imag : std_logic_vector(31 downto 0);
signal value_data_out_mag : std_logic_vector(31 downto 0);

signal value_mag_in_ready: std_logic;
signal value_mag_out_ready: std_logic;

signal fft_state : fft_state_dec := FFT_STATE_IDLE;
signal flag_index : bit;


begin begin

--Port Zuweisung
c_float_fft: entity work.fft_magnitude_calc
PORT MAP (
clk => clk,
reset => reset,
input_valid => input_valid,
input_re => input_re, -- in Fixpoint
input_im => input_im, -- in Fixpoint
output_valid => output_valid,
output_magnitude => output_magnitude
);
u_fft : fftmain
port map (
clock => clk,
reset => reset,

di_en => di_en,
di_re => di_re,
di_im => di_im,

do_en => do_en,
do_re => do_re,
do_im => do_im
);



fft_calc : FFTMAIN
port map (
clock => clk,
reset => reset,
di_en => value_data_in_ready,
di_re => value_data_in_real_scaled,
di_im => value_data_in_imag,
do_en => value_data_out_ready,
do_re => value_data_out_real,
do_im => value_data_out_imag
);

fft_mag: fft_magnitude_calc
port map (
clk => clk,
reset => reset,
input_valid => value_mag_in_ready,
input_re => value_data_out_real,
input_im => value_data_out_imag,
output_valid => value_mag_out_ready,
output_magnitude => value_data_out_mag
);


task_state_transitions : process ( current_task_state, task_start, index ) is task_state_transitions : process ( current_task_state, task_start, index ) is
begin begin
case current_task_state is case current_task_state is
when work.task.TASK_IDLE => when work.task.TASK_IDLE =>
if ( task_start = '1' ) then if ( task_start = '1' ) then
next_task_state <= work.task.TASK_RUNNING;
next_task_state <= work.task.TASK_RUNNING;
end if; end if;
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
if ( index = (work.task.STREAM_LEN - 1) ) then
if ( index = work.task.STREAM_LEN - 1 ) then
next_task_state <= work.task.TASK_DONE; next_task_state <= work.task.TASK_DONE;
end if; end if;
when work.task.TASK_DONE => when work.task.TASK_DONE =>
end case; end case;
end process task_state_transitions; end process task_state_transitions;


----------------------------------------------------------------------
--FFT Statemachine
fft_state_transitions : process ( all ) is
begin
next_fft_state <= current_fft_state;
case current_fft_state is
when FFTIdle =>
if ( current_task_state = work.task.TASK_RUNNING ) then -- Weiterschaltbedingung
next_fft_state <= FFTRead;
end if;

when FFTRead =>
if ( fft_index = work.task.STREAM_LEN ) then
next_fft_state <= FFTWait;
end if;
when FFTWait =>
if ( do_en = '1') then
next_fft_state <= MAGRead;
end if;
when MAGRead =>
if ( output_valid = '1' ) then -- Weiterschaltbedingung
next_fft_state <= MAGStore;
end if;
when MAGStore =>
if ( cnt = (work.task.STREAM_LEN - 1)) then
next_fft_state <= FFTIdle;
end if;
end case;
end process fft_state_transitions;
----------------------------------------------------------------------

sync : process ( clk, reset ) is sync : process ( clk, reset ) is
variable fifo_in : signed(31 downto 0);
variable fifo_in2 : signed(31 downto 0);
variable mag_out : signed(31 downto 0);
begin begin
if ( reset = '1' ) then if ( reset = '1' ) then
current_task_state <= work.task.TASK_IDLE; current_task_state <= work.task.TASK_IDLE;
index <= 0; index <= 0;
read_index <= 0;
fft_index <= 0;
cnt <= 0;
signal_write <= '0';
signal_read <= '0';
input_valid <= '0';
fifo_in := (others => '0');
fifo_in2 := (others => '0');
mag_out := (others => '0');
-- C <= (others => '0');
-- D <= (others => '0');
-- E <= (others => '0');
--F <= (others => '0');
input_re <= (others => '0');
input_im <= (others => '0');
signal_writedata <= (others => '0');
di_en <= '0';
di_re <= (others => '0');
di_im <= (others => '0');
elsif ( rising_edge( clk ) ) then elsif ( rising_edge( clk ) ) then
current_task_state <= next_task_state; current_task_state <= next_task_state;
case next_task_state is case next_task_state is
index <= 0; index <= 0;
signal_write <= '0'; signal_write <= '0';
when work.task.TASK_RUNNING => when work.task.TASK_RUNNING =>
-- index <= index + 1; --Index wird hier hochgezählt, muss in FFT State gemacht werden
-- signal_write <= '1';
-- signal_writedata <= ( others => '0' );
index <= index + 1;
signal_write <= '1';
signal_writedata <= ( others => '0' );
when work.task.TASK_DONE => when work.task.TASK_DONE =>
index <= 0; index <= 0;
signal_write <= '0'; signal_write <= '0';
end case; end case;
end if;
end process sync;


----------------------------------------------------------------------
--Output Statemachine

current_fft_state <= next_fft_state;
signal_write <= '0';
signal_read <= '0';
input_valid <= '0';
di_en <= '0';
case next_fft_state is
when FFTIdle =>
when FFTRead =>
di_en <= '1';
signal_read <= '1';
--fifo_in <= signal_readdata(31 downto 0);
if(signal_readdata(30 downto 23) /= "00000000") then
fifo_in(31) := signal_readdata(31);
fifo_in(30 downto 23) := signed(signal_readdata(30 downto 23)) - 4;
fifo_in(22 downto 0) := signed(signal_readdata(22 downto 0));
--fifo_in2 := (fifo_in(31) & (signed(fifo_in(30 downto 23)) - 4) & (signed(fifo_in(22 downto 0))));
end if;
di_re <= to_fixed(std_logic_vector(fifo_in));
di_im <= (others => '0');
fft_index <= fft_index +1;
when FFTWait =>
fft_index <= 0;
when MAGRead =>
--D <= do_im(31) & ( unsigned(do_im(30 downto 23)) - B ) & unsigned(do_im(22 downto 0));
input_valid <= '1';
input_re <= do_re;
input_im <= do_im;
read_index <= read_index + 1;
when MAGStore =>
--read
if(read_index <= work.task.STREAM_LEN) then
--A <= do_re(31) & ( unsigned(do_re(30 downto 23)) - B ) & unsigned(do_re(22 downto 0));

--D <= do_im(31) & ( unsigned(do_im(30 downto 23)) - B ) & unsigned(do_im(22 downto 0));
signal_read <= '1';
input_valid <= '1';
input_re <= do_re;
input_im <= do_im;
read_index <= read_index + 1;

end if;
--store
signal_write <= '1';
mag_out(31) := output_magnitude(31) ;
mag_out(30 downto 23) := signed(output_magnitude(30 downto 23)) + 4;
mag_out(22 downto 0) := signed(output_magnitude(22 downto 0));
signal_writedata <= to_float(std_logic_vector(mag_out));
index <= index + 1;
cnt <= cnt + 1;
end case;
fft : process (clk, reset) is
begin
-- Bei Reset alle Signale zurücksetzen
if ( reset = '1' ) then
value_data_in_ready <= '0';
value_data_in_real <= ( others => '0');
value_data_in_imag <= ( others => '0');
value_data_out_ready <= '0';
value_data_out_real <= ( others => '0');
value_data_out_imag <= ( others => '0');
-- Für jeden Takt add_state Zustandsmaschine aufrufen.
elsif ( rising_edge( clk ) ) then
case fft_state is
when FFT_STATE_IDLE =>
if ( current_task_state = work.task.TASK_RUNNING ) then
fft_state <= FFT_STATE_READ;
end if;
when FFT_STATE_READ =>


----------------------------------------------------------------------
end if;
end process sync;
signal_read <= '1';
value_data_in_real <= signal_readdata;
signal_read <= '0';
fft_state <= FFT_STATE_SCALE;
when FFT_STATE_SCALE =>

if value_data_in_real(30 downto 23) = "00000000" then
value_data_in_real_scaled <= value_data_in_real;
else
value_data_in_real_scaled(30 downto 23) <= std_logic_vector(signed(value_data_in_real(30 downto 23)) - 4);
end if;
fft_state <= FFT_STATE_FFT;

when FFT_STATE_FFT =>

value_data_in_ready <= '1';

if ( value_data_out_ready = '1' ) then
fft_state <= FFT_STATE_MAGNITUDE;
end if;

when FFT_STATE_MAGNITUDE =>

value_mag_in_ready <= '1';

if (value_mag_out_ready = '1') then
fft_state <= FFT_STATE_WRITE;
end if;

when FFT_STATE_REVERSE_ORDER =>


when FFT_STATE_WRITE =>

signal_write <= '1';
signal_writedata <= value_data_out_mag;

fft_state <= FFT_STATE_DONE;

when FFT_STATE_DONE =>

signal_read <= '0';
signal_write <= '0';
value_data_in_ready <= '0';
value_data_out_ready <= '0';
value_mag_in_ready <= '0';
value_mag_out_ready <= '0';

fft_state <= FFT_STATE_IDLE;

end case;
end if;
end process fft;


task_state <= current_task_state; task_state <= current_task_state;



+ 0
- 2
software/signal_processing/fft.c View File

} }
} }




int task_fft_run( void * task ) { int task_fft_run( void * task ) {


fft_config * config = (fft_config*)task; fft_config * config = (fft_config*)task;

+ 3
- 0
tests/hardware/task_fft/Makefile View File

vhdl_srcs = \ vhdl_srcs = \
../../../hardware/system/reg32.vhd \ ../../../hardware/system/reg32.vhd \
../../../hardware/system/avalon_slave.vhd \ ../../../hardware/system/avalon_slave.vhd \
../test_utility.vhd \
../test_avalon_slave.vhd \
../../hardware/test_data_channel.vhd \ ../../hardware/test_data_channel.vhd \
../../../hardware/system/avalon_slave_transitions.vhd \ ../../../hardware/system/avalon_slave_transitions.vhd \
../../../hardware/system/task.vhd \ ../../../hardware/system/task.vhd \


include ../data_tests.mk include ../data_tests.mk




+ 2
- 1
tests/hardware/task_fft/vsim.wave View File

add wave -position end sim:/test_task_fft/dut/*
add wave -position end sim:/test_task_fft/dut/u_fft/*


Loading…
Cancel
Save